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Executive Summary 
A major challenge to the successful planning and evolution of an Acknowledged System of Systems (SoS) 
is the current lack of understanding of the impact that the presence or absence of a set of constituent 
systems has on the overall SoS capability.  Since the candidate elements of a SoS are fully functioning, 
stand-alone systems in their own right; they have goals and objectives of their own to satisfy, some of 
which may compete with those of the overarching SoS.  These system-level concerns drive decisions to 
participate (or not) in the SoS.  Typically, individual systems are invited to join the SoS construct, and 
persuaded to interface and cooperate with other Systems to create the “new” capabilities of the 
proposed SoS.  Current SoS evolution strategies lack a means for modeling the impact of decisions 
concerning participation or non-participation of any given set of systems on the overall capability of the 
SoS construct.  Without this capability, it is difficult to optimize the SoS design. 

The goal of this research is to model the evolution of the architecture of an acknowledged SoS that 
accounts for the ability and willingness of constituent systems to support the SoS capability 
development.  In particular, the research focuses on the impact of individual system behavior on the SoS 
capability and architecture evolution processes. 

The agent based model (ABM) structure is developed to provide an Acknowledged SoS manager a 
decision making tool in negotiation of SoS architectures during wave model cycles The overall ABM 
consists of 3 major elements; SoS acquisition environment, SoS agent, and a system agent.  Each agent 
has its own set of behavior patterns.  SoS meta- architecture obtained from one of the SoS meta-
architectures generation modules, namely; Fuzzy –genetic optimization model, Multi-Level Optimization 
model, and Multi-objective optimization model, drives the negotiation process. ABM also provides 
alternatives for participating systems to choose from three types of negotiation models. The negotiation 
model for SoS is fixed. 

The ABM has one instance of the SoS agent and multiple instances of the system agent.  The number of 
instances of the system agent corresponds to the number of systems in the SoS.  This approach helps 
create multiple alternatives to generate architectures for acknowledged SoS.  An Intelligence, 
Surveillance and Reconnaissance (ISR) SoS, consisting of 22 individual systems with five capabilities, is 
used as a domain example to demonstrate the framework of the ABM for one wave cycle.   

The current analysis environment has matured to the point where it could support SoS analysis and 
decision-making, which would identify new opportunities to improve the SoS analysis tools.  The next 
step is to create the demonstration and presentation materials necessary to describe the capabilities of 
the ABM, and provide an overview of analysis tools to potential users identified by the sponsor.   
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1 Introduction  
The goal of this research is to model the evolution of the architecture of an acknowledged Systems of 
Systems (SoS) that accounts for the ability and willingness of constituent systems to support the SoS 
capability development.  Since DoD SoS development efforts do not typically follow the program of 
record acquisition process described in DoDI 5000.02, the Wave Model proposed by Dahmann and 
Rebovich is used as the basis for this research on SoS capability evolution.  The Wave Process Model 
provides a framework for an agent-based modeling methodology, which is used to abstract the non-
utopian behavioral aspects of the constituent systems and their interactions with the SoS.  In particular, 
the research focuses on the impact of individual system behavior on the SoS capability and architecture 
evolution processes. 

1.1 Motivation 
This research develops, validates, and pilots ABM Methods, Tools and Processes (MTPs) that support 
investigating the properties of an acknowledged SoS, and can be applied early in the life cycle when 
there is uncertainty and ambiguity about SoS requirements, architecture, DoD Acquisition guidance and 
implementation technologies, based on the Wave Process Model.   

A generic ABM framework provides a capability to model the entire SoS in the context of its 
environment, which is distinct from a more typical modeling of one system in the context of its 
environment.  There are many moving pieces in such a model, and that complexity introduces many 
opportunities to select suboptimal designs for an Acknowledged SoS.  We cannot afford to continue to 
make decisions “eyeballing” the SoS design and improving through trial and error.  We need to use 
modern tools to model our understanding of the behavior of the SoS under difference circumstances 
(such as participation/non-participation of systems) so that we have clear visibility into the full range of 
feasible SoS designs as well as tradeoffs among those designs, and see the predictable impacts in 
advance of decisions.  No structured, repeatable approach is consistently used within DoD for planning 
and modeling proposed alternative Acknowledged SoS architectures, and then systematically prioritizing 
those architectures in order of the best to worst match with stakeholder needs like flexibility, 
robustness, performance, etc.  This research takes a step towards achieving that capability by 
introducing a new analysis framework that uses modern modeling tools to expose foreseeable SoS level 
impacts for decision makers early in the lifecycle, when such impacts can be managed less expensively 
and more solutions to possible problems can be put on the table.   

Early insight into likely properties of acknowledged SoS meta architectures and conditions that affect 
their implementation and effectiveness will inform technological and policy decisions about far reaching 
and expensive SoS acquisition decisions. 
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1.2 Research Objectives  
The goal of this research is to develop a proof of concept ABM tool suite for SoS systems simulation for 
architecture selection and evolution.  An Intelligence, Surveillance and Reconnaissance (ISR) SoS, 
consisting of 22 individual systems with five capabilities, is used as a domain example to demonstrate 
the framework of the ABM tool suite.  A second example, using an ad hoc SoS in the Search and Rescue 
domain, shows that the framework is extensible to other domains of application.  The most far-reaching 
objective is demonstrating the interoperability among the framework and several optimization models 
and several agent models combined here.   

Policies on architecting in the DoD continue to evolve, although perhaps at a slower pace than in the 
recent past.  Partly due to this evolution, but also because analysis techniques of very large alternative 
architectures is in its infancy, the modeling of architecture development and evolution is not settled 
science.  This is particularly true in SoS settings [1].  Existing analysis methodologies and tools narrow 
the scope of the SoS problem space by invoking the assumption that there is a limited set of solutions, 
solely or primarily driven by technical performance considerations.  However, the SoS problem 
boundary includes integration of technical systems as well as cognitive and social processes, which alter 
system behavior [2].   

As mentioned before, most system architects assume that SoS participants exhibit nominal (utopian) 
behavior, but deviation from nominal motivation leads to complications and disturbances in desired 
systems’ behavior.  It is necessary to capture the behavioral dimension of SoS architecture to be able to 
represent the full problem space to guide the SoS architecting and analysis phase [2].  Evaluation of 
architectures lends itself to a fuzzy approach because the criteria are frequently non-quantitative, 
subjective, or based on unknowable future conditions (such as “robustness”).  Finally, since one of the 
current problems with SoS composition is lack of imagination, and system participation or non-
participation is conveniently binary, a genetic algorithm (GA) as one of the non-gradient based 
optimization approaches can help to explore a wider potential architecture space more fully. 

Agent based models (ABMs) consist of a set abstracted entities referred to as agents, and a framework 
for simulating agent decisions and interactions.  Agents may have their own goals and are capable of 
perceiving changes in the environment [3].  SoS behavior (global behavior) emerges from the decisions 
and interactions of the agents acting as individuals.  This approach may provide insight into complex, 
interdependent processes.  Agent-based modeling methodology has several benefits over other 
modeling techniques; it enables Acknowledged SoS manger to capture emergent patterns of system 
behavior, provides a natural description of a system composed of behavioral entities and is flexible for 
tuning the complexity of the entities [4].  The methodology is used in a wide range of application 
domains including financial markets [5], homeland security applications [6] and autonomous robots [7].   

Agent-based modeling methodology is used to abstract behavioral aspects of the acquisition process.  In 
this project, the systems are assumed as the agents.  The System Agents embody themselves and the 
people (individual stakeholders) responsible for them.  The wave model applies to an Acknowledged 
SoS, thus there is also a specific agent responsible for the SoS, and that agent influences the other 
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System Agents.  An initial SoS mission is initially determined and funds are allocated to the mission from 
a responsible organizational entity [8].  The structure of the wave model is depicted in Figure 1  [9]. 

 

Figure 1.  The Wave Model of SoS initiation, engineering, and evolution 

2 Background and Literature Review  

2.1 Systems of Systems Challenges 
System of systems (SoS) is a specific case of complex adaptive systems (CAS).  To understand the 
behavior of SoS we must understand not only the behavior of the parts but how they act together to 
form the behavior of the whole.  Tools and models for SoS engineering need to address central 
properties of CAS including its elements (and their number), interactions (and their strength), 
formation/operation (and their time scales), diversity/variability, environment (and its demands), 
activities and their objectives.   

Like any CAS, System of systems is at the edge of chaos.  It tries to maintain dynamic stability through 
constant self-adjustment and evolution.  As shown in Figure 2, chaos and order are two complementary 
states of our world.  A dynamic balance exists between these two states.  Order and structure are vital 
to life.  Order ensures consistency and predictability and makes the creation of systems possible.  
However, too much order leads to rigidity and suppresses creativity.  Chaos constantly changes the 
environment creating disorder and instability but can also lead to emergent behavior and allows novelty 
and creativity.  Thus, sufficient order is necessary for a system to maintain an ongoing identity, along 
with enough chaos to ensure growth and development.  The challenge in SoS engineering is to design an 
organized complexity that will allow SoS to achieve its goals.  Designing a balanced and organized 
complexity is not a trivial task because SoS capabilities can conflict with constituent system 
requirements and plans.  Furthermore, individual systems can belong to more than one SoS where 
conflicts can arise due to different change requests to the constituent systems.  The need for techniques 
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to enable reductions in SoS complexity and enable managed evolution has been pointed in the 
literature.   

 

Figure 2.  The edge of chaos, the point of emergence and SoS 

Complexity methods analyze systems and its parts in the context of the whole while considering its 
interaction with its environment as the environmental influence is important in describing the behavior 
of the system.  Modeling and simulation used in the study of CAS to understand emergent behaviors of 
systems, discover its dynamic behavior, and identify intra and interdependencies among its elements 
and environment.  Tools for modeling and studying complex systems include nonlinear dynamics, agent-
based models and network theory based models where system represented as a network consisting of 
vertices (constituent systems) and edges (interactions).   

In the SoS domain, modeling and simulation becomes an important tool for exploring new capability 
options, identifying integration problems, evaluating SoS architecture and supporting SoS level testing 
[10].  Recent studies of SoS offer various modeling approaches for SoS engineering.  For example, Lane 
and Bohn [10] present an approach to quickly generate models using SysML models in order to support 
decision making in SoS.  Haimes [11] extends hierarchical holographic modeling (HHM) to phantom 
system models (PSM).  HHM captures multiple features of a system that may reside in different levels of 
a system.  This modeling approach is used to study risks for government agencies.  PSM builds on to 
HHM by providing operational guidelines and principles to model a meta-model for SoS.  Meta-model of 
the SoS serves as the coordinator and integrator of the multiple models; building on the shared and 
unshared state variables.  Garett et al [12] present a framework for integrating complex systems into 
SoS functional capability.  Graph theory along with agent-based modeling and other simulation models 
are explored in their framework to address interfaces, interoperability and integration aspects of SoS 
engineering.   

Architecture modeling and evaluation plays a key role in SoS engineering for exploring logical, behavioral 
and performance characteristics of SoS in order to acquire desired capabilities.  Static architectural 
frameworks are more suited for traditional systems and current executable models construct models by 
manually transforming architectural descriptions with weak model consistency checking [13].  A data-
centric SoS architecture modeling approach is proposed in Ge et a [13] for iterative architecture 
refinement where SoS requirements are changing.  The approach constructs a high-level data meta-
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model to describe semantic relationships among constituent system architectural data elements.  This 
meta-data enables construction of executable models based on core data elements while preserving 
semantic consistency and traceability in architectural models.   

Evaluation of architectures is another SoS challenge area as it lends itself to a fuzzy approach because 
the criteria are frequently non-quantitative, or subjective [14], or based on difficult to define or even 
unknowable future conditions, such as “robustness.”  Individual attributes may not have a clearly 
defined, mathematically precise, linear functional form from worst to best.  The goodness of one 
attribute may or may not offset the badness of another attribute.  Several moderately good attributes 
coupled with one very poor attribute may be better than architecture with all marginally good 
attributes, or the reverse!  A fuzzy approach allows many of these considerations to be handled using a 
reasonably simple set of rules, as well as having the ability to include non-linear characteristics in the 
fitness measure.  The simple rule set allows small adjustments to be made to the model to see how 
seemingly small changes affect the outcome. 

There are other SoS engineering research initiatives including the European Commission’s 7th 
Framework Programme, which is currently funding four key projects.  T-AREA-SoS is an EC project, 
dedicated to develop a strategic research agenda in SoS engineering that is mutual to the EU and USA.  
Initial set of themes identified for strategic research agenda include [15]: 

• Theoretical foundations of SoS,  
• Characterization and description of SoS,  
• Predicting and management of emergence,  
• Measurement and metrics for SoS, 
• Multi-level modeling, 
• Evaluation of SoS, 
• Human and organizational aspect within SoS, 
• Trade-off at the SoS level,  
• Prototyping of SoS,  
• Definition and evolution of SoS architecture, 
• Energy efficiency in SoS,  
• Cyber-security aspects in SoS  

RoadtoSoS, another EC IP project dedicated to SoS, focuses on research, technology, development, and 
innovation strategies for Europe in four major SoS engineering applications: distributed energy 
generation and smart grids, integrated multi-site industrial production, emergency and crisis 
management, and multi-model traffic control.  DANSE project focuses on developing a tool set to specify 
SoS and SoS requirements at high level using Unified Profile for DoDAF and MoDAF (UPDM), and analyze 
them at lower levels using simulation toolsets and statistical model checking for formal verification [16].  
The goal is to apply this toolset to dynamically evolve SoS architecture and optimize SoS architecture, 
design and validate through simulation tools.  The toolset is currently being applied to various 
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application areas including development of dynamic water treatment SoS architecture, development of 
dynamic Air Traffic Management SoS, and development of autonomous ground transport SoS.  The 
DANSE project focuses on formal semantics for modeling SoS language to facilitate analysis and 
dynamical reconfiguration.  Using this formal semantics, a toolset is developed by integrating various 
SoS analysis and simulation tools with commercial design tools.  COMPASS, another EU IO project 
dedicated to SoS, focuses on developing a formal notation called COMPASS Modeling Language (CML) 
which extends SysML, VDM and Circus notations for SoS modeling and analysis.  The CML is intended to 
be accessible to a wide range of developers building different SoS models and provides different levels 
of description including a graphical view for stakeholders to understand.  SoS architectures and 
contracts can be expressed using the CML formal modeling language [17].  The tool is applied in two 
case studies; Video/Audio/Home automation ecosystem, and Accident Response System.   

It is envisioned that integrating various modeling approaches that address different aspects of the SoS 
engineering problem provides insights and systems thinking about various dimensions of the SoS 
engineering problem.  The methodology outlined in this research and technical report falls under a 
multi-level plug-and-play type of modeling approach to address various aspects of SoS acquisition 
environment: SoS architecture evaluation, SoS architecture evolution, and SoS acquisition process 
dynamics including behavioral aspects of constituent systems.   

2.2 Acknowledged SoS  
It has been previously recognized that the architecture for an Acknowledged SoS is an overlay on 
existing systems that have their own architectures [18]. Moreover, successful Acknowledged SoS 
managers understand that existing system architectures work best if left to the systems engineering and 
architecture professionals at that hierarchy. It is in the best interest of the SoS domain manager to co-
ordinate and guide individual systems rather than foist his own ideas for success. On the contrary, the 
constituent-systems do not need to acquiesce to SoSE requests or officially report to SoSE teams. 

This modeling framework presented is for an Acknowledged System of Systems (SoS), where each 
component system is a fully functioning, independently funded and managed System (or Program 
Office).  A high-level manager foresees the opportunity to achieve a needed, new capability by using 
existing systems in a way such that they are kept unchanged or incorporated with relatively minor 
system changes.  The SoS approach is only useful if it can achieve the new capability for either or both 
the reduced cost compared to designing a separate, new “purpose built” system, and/or reduced time 
to field the new capability.  The architecture proposed is a novel architecture, which will be called the 
meta-architecture throughout the report. It will guide the SoS system generation through the wave 
model. 

The new capabilities being sought from the SoS are achieved by combining mostly existing System 
capabilities and/or adding new capabilities that arise in conjunction with other Systems (i.e., through 
new interfaces) [19].  If simply throwing more Systems (with their individual capabilities) at the problem 
sufficed, there would be no need to create the SoS.  Therefore, all successful Acknowledged SoS 
architectures need to spend significantly on the relationships between the systems and the SoS. The 
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nature of the Acknowledged SoS though, means that the SoS manager does not have absolute authority 
to command participation, but must “purchase” the component Systems’ participation and 
modifications not merely with funds but also through persuasion, the strength of the vision of the SoS, 
quid pro quos, the bully pulpit and whatever other means are legitimate and effective [8].  Individual 
Systems remain free to decide not to participate in the SoS development.  Alternatively, they may not be 
available during a particular operational period of need.  Some capabilities and interfaces already exist, 
meaning they are free and fast for development, but they may still have a cost to operate in the fielded 
SoS.  Some systems may have enough capability that the SoS can tap their spare capability, so they are 
essentially free to operate as well.  Other capabilities may need minor (compared to a major program) 
development, either within a system, or a new interface with another system.  The Performance 
capabilities of the SoS will generally be greater than the sum of the capabilities of its parts [20].  If this 
were not the case, there would be no need for the SoS.  Changing the way the systems interact without 
modification typically would not improve the capabilities by simply adding more systems that are 
individual.  Systems engineering in the overall context SoS System Engineering (SE) must address from 
first to last all behavior of joint group of systems, and the crucial issues, which affect that behavior. An 
instance of Acknowledged SoS is a military command and control SoS that has transitioned from a 
collaborative SoS to an acknowledged SoS due to the importance of the missions supported by the SoS 
or the complexities of the cross-cutting SoS capabilities [21]. 

There have been few attempts to describe the architecting method of Acknowledged SoS. One such 
approach is based on the federated architecture (FA) [22]. FA is a pattern that describes the 
construction of the meta-architecture. This approach emphasizes to allow interoperability and 
information sharing between constituent systems and the centralized controller.  Another approach has 
been to model the interdependencies of systems and impacts of failures using Bayesian networks. The 
outcomes of the Bayesian analysis with failure rates modeled as beta distributions provide a knowledge 
base for decision makers to control risk in development of a SoS with complex interdependencies. [23] 

The SoS acquisition environment is affected by several external factors such as changes in the national 
priorities, changes in the SoS funding and changes in threats to the nation. Please refer to Figure 3. Thus, 
the initial environment model 𝐸0 can be represented as a function of these variables. 

𝐸𝑇 = 𝑓(𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑒𝑠, 𝑆𝑜𝑆 𝑓𝑢𝑛𝑑𝑖𝑛𝑔, 𝑡ℎ𝑟𝑒𝑎𝑡𝑠) 
 

The SoS agent is influenced by the changes in the SoS acquisition environment. Let 𝐸𝑇 be the initial 
environment model which represents the SoS acquisition environment at wave time T=0.  

As the SoS acquisition progresses through wave cycles, these variables are updated by the SoS 
Acquisition Manager to reflect current acquisition environment. Thus the environment model 𝐸𝑇+1  at 
wave time T+1: 
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𝐸𝑇+1 = 𝐸𝑇𝜎𝑇+1 

 
where  𝜎𝑇+1 is the change from time T in external factors at wave time T+1.  

The environment model also includes two types of agents, the SoS agent and the individual system 
agent. The SoS agent is responsible for the development of the SoS architecture and the instances of the 
individual system agent represent independent systems that can provide the capabilities necessary for 
the SoS agent. One cycle through the proposal-negotiation-agreement-execution development steps is 
an epoch in the wave model [21].  Once the SoS and participating systems agree on a SoS architecture it 
culminates in a wave of the modeling cycle.  

The SoS architecture after the end of the wave is saved for as a chromosome and serves as a starting 
point for the start of the next wave. 

Within the epoch cycles, the Agent Based Model lets the SoS Agent make cooperation requests to the 
individual Systems’ independent Agents, which have relatively simple rules for their negotiation 
strategies.  We currently have three types of system agent negotiation strategies:  selfish, opportunistic-
Markov, and cooperative.  The ABM portion of the framework manages the negotiations, and returns an 
“achievable” systems negotiated architecture/chromosome for re-evaluation by the fuzzy inference 
system.  SoS Agent uses this negotiated architecture to implement and making it an initial condition and 
input for the following wave meta-architecture optimization models.  

Some prominent characteristics of Acknowledged SoS are: 

1. A strong organizational relationship between the Acknowledged SoS manager and participating 
systems is important to address constraint goals over the life of the SoS. 

2. Acknowledged SoS should be pliable enough to accommodate any variations in individual 
systems and reduce the impact on the constituent systems considerably. 

3. An acknowledged SoS should try to fall between feasible and trivial architectures.  
4. Overall architecture quality of Acknowledged SoS fuzzy because it includes many qualitative 

attributes besides quantitative ones. These qualitative attributes cannot be easily measured or 
tested. 

These characteristics provide the impetus to develop a methodology of architecting Acknowledged SoS 
using genetic algorithms and fuzzy inference systems. Genetic algorithms help in representing the 
systems and their interfaces whereas fuzzy logic helps in evaluating the overall architecture quality by 
qualitative attributes. The domain model (comprising systems and their relationships) is described in 
terms of bits in the chromosome to evaluate cost, capability contribution, and time to deliver. The fuzzy 
assessor evaluates these chromosomes for fitness in terms of overall architecture quality.  The GA 
further manages the exploration of the architecture space and picks an optimum or ideal solution. 

The model provides a set of systems and their interfaces with other systems as a linear array of bits; 
zero indicates non-participation in a performance capability, and one represents participation.  If a 
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System does not participate, then no interface with that System is possible.  Incorporating a fuzzy 
evaluation in the process allows substantial nonlinearity to be introduced, but controlled by a simple, 
short list of rules.  

 

Figure 3.  Acknowledged SoS acquisition described as a wave model 

2.3 Representing and Assessing SoS Architecture Information 
One of the problems with SoS is that they frequently cross domains; they either address broad new 
problem areas that are not traditionally understood as having connections, or develop because of 
changes in technology.  Either way, analyzing this type of problem requires extensions to the old ways of 
thinking about or doing things.  Simply describing the characteristics, boundaries, expectations, or 
governance of a SoS is difficult, being fraught with no commonly accepted terms for the new area, little 
agreement on what constitutes success, nor even a good theory of SoS [24].  The acknowledged SoS that 
is the focus of this effort only acerbates these problems because of the inherent limits of the 
responsibility, authority and accountability between the SoS manager and the system program offices 
who participate in the SoS formation [8] [25].  The literature describing SoS engineering is growing in 
coverage, but it is still sparse.  Pitsko and Verma [25] describe four principles to make a SoS more 
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adaptable.  They spend a large part of their time describing what adaptable means to various 
stakeholders, that different stakeholders may continue to have slightly different concepts of what 
adaptability means, that the definition is probably dynamic – changing over time, and that this will hold 
for many SoS attributes.  Schreiner and Wirthlin discuss a partial failure to fully model a space detection 
SoS architecture, but learned a lot about how to improve the next time they try it [26].  The point is that 
people are not modeling ahead of time according to a theory then reporting on the success. 

The differences between SoS engineering and systems engineering are discussed by Flanagan and 
Brouse [27], pointing out that different sorts of trade spaces open up in SoS.  Some of the concepts 
about flexibility in this report trace to the options and limiting risk in DoD programs discussion from 
Giachetti [28].  Countering some of these difficulties in describing SoS architectures are the advances in 
describing complex systems with fuzzy sets.  There are numerous approaches in the literature 
attempting to describe useful attributes that can be measured to help understand or predict the value 
of various architectures.  These include evolvability and modularity almost as complementary attributes 
[29], while Christian breaks evolvability into four components described as extensibility, adaptability, 
scalability and generality [30].  Christian introduces the concept of complexity to overlay on these 
attributes because too simple a system cannot evolve.  Kinnunen reviews at least four definitions of 
complexity [31] before offering his analysis of one related to the object process methodology of Dori, 
and Mordecai and Dori extend that to SoS specifically for interoperability [32].  Fry and DeLaurentis also 
discussed measuring Net-Centricity (interoperability within the SoS), noting the difficulty of pushing the 
commonly used heuristics too far, because the Pareto front exists in multiple dimensions [33], not just 
two at a time.  Ricci et al. discuss designing for evolvability of their SoS in a wave model and playing it 
out several cycles in the future, evaluating cost and performance. [34]  Because SoS are complex, there 
are many ways to look at them, with no dominant theory yet; this is why we are pursuing this direction 
of research [35]. 

We selected slightly different definitions for some of our SoS attributes, especially for flexibility and 
robustness.  Lafleur used flexibility in the operational context of changing after deployment [36], in a 
way that sort of trumped Deb’s notion of robustness [37] by shifting the optimum (narrowly better 
performance), rather than accepting lower performance across a wider front; we preferred to use 
robustnesss in the operational context suggested by Singer [38] of losing a node in a network, rather 
more like our losing a system from our SoS.  Our concept of the flexibility attribute is more attuned to 
giving the SoS manager flexibility during development, while picking systems to supply desired 
capabilities.  This falls in line with some of the thinking of recent discussions of resilience and sensitivity 
analyses [39] [40] [41]. 

Mendel notes that there are numerous fuzzy approaches allowing, “Computing with words” and 
extracting meaning even from the degree of our lack of knowledge to be included in solving a large 
variety of problems [42].  Li and Chiang [43] introduce the concept of complex fuzzy sets, which even 
replace the if-then rules of Mamdami fuzzy systems.  Many of these techniques are more applicable to 
extremely large data sets such as those of social media where polling a huge population can detect 
trends and shifts in public opinion on the time scale of hours, rather than subject matter expert opinions 
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on engineering tasks.  We primarily used simpler, older more straightforward techniques for this first 
modeling approach. 

2.4 Negotiation Models for SoS  
During an interaction between entities/agents/systems that are trying to solve a problem two kinds of 
altitudes can occur: Cooperation if all systems have the same goal, negotiations if self-interests are in 
conflict.  In SoS where individual systems have their own self-interests, negotiation becomes an 
important aspect of SoS acquisition.  During a negotiation, each party communicates its own desires and 
then compromises to reach a mutually beneficial agreement.  In negotiation, each party would like to 
reach an agreement rather than disagreement but the agreement should be as favorable to each party 
as possible.   

In real life negotiation situations there are three main features of a negotiation process (Fatima et al, 
2004): 

- Time constraints of the negotiators 
- Information state of the negotiators 
- The number of issues to be bargained over 

There are two main approaches to negotiation studies; formal theory of bargaining and informal 
theories.  Formal models use a game-theoretic approach to analyze different situations and results with 
the aim off finding the best rational strategy for the negotiator.  This approach assumes that people 
involved in the negotiation process are rational and follow certain negotiation protocols.  Formal game 
theoretic models minimize communication among participants but find a solution that maximizes the 
social welfare of the negotiation participants.  Informal approaches (also referred as knowledge based 
protocols) focus on identifying beneficial strategies for a negotiator and do not impose rationality 
restrictions.  These models depend on trade-offs made by the participants to determine the agreement 
solution.  However, from a computational modeling perspective, informal approaches are more difficult 
to apply as they do not use formal theories or strategies [44] and they do not guarantee maximization of 
social welfare for negotiators [45]. 

In a given negotiation scenario, game theoretic approaches look into two main problems [46]: 

• The design of an appropriate protocol to manage the interactions between the negotiation 
participants.  The protocol establishes the rules of engagement among the participants.  The 
design of protocol have certain desirable properties including; guaranteed success for mutual 
agreement, maximizing social welfare of negotiation participants, Pareto efficiency where there 
is no outcome that will make one agent better off without making at least one other agent 
worse off, individual rationality, stability, simplicity and distribution.   

• The design of a strategy for the negotiation participants that will maximize their welfare.   

Negotiation dynamics have been explored widely in multi-agent negotiation applications.  Kraus [44] 
proposed a strategic-negotiation model that, which is based on game-theoretic approaches and 
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demonstrated the use of this model in various applications including data allocation problems in 
information servers, resource allocation and task distribution, and pollution allocation problem.  The 
goal of this approach is to minimize the delays and time spent on reaching mutually beneficial 
agreements.  Fatima et al. [47] proposed a model for multi-issue negotiation under time constraints in 
an incomplete information setting.  They determined the properties of a Pareto-optimal equilibrium 
solution.  Wanyama and Far [45] proposed a negotiation protocol for group choice decision-making 
problems.  Jonker et al [48] developed a negotiation model for multi-attribute negotiation where each 
negotiator has incomplete preference information about each other.  Krothapalli and Deshmukh [49] 
proposed negotiation protocols for multi-agent manufacturing systems. 

In the SoS domain, the study of negotiation dynamics is in its infancy.  A fuzzy decision analysis model is 
developed to represent the negotiation between SoS manager and constituent systems in an 
acknowledge SoS acquisition environment [50].  Contracting is a special form of negotiation where an 
organization tries to contract tasks that it cannot perform by itself or where others can perform it more 
effectively than itself.  The challenge in these settings is to convince another organization that is self-
interested to agree on collaboration.  Incentive contracting is studied in economics and game theory and 
applied in multi-agent negotiation settings as well [51].  Contracting processes and structures for SoS 
acquisition are studied in [51] to identify effective contracting structures to maximize the probability of 
SoS acquisition success.   

2.5 Generating Optimum SoS Meta-Architectures 

2.5.1 Introduction  
While systems architecting involves the process of structuring system components and their 
interconnections, system of systems (SoS) architecting involves multiple inter-connected systems and 
can include socio-technical and dynamic dimensions.  The concept of meta-systems and meta-
architecture’s has not been fully crystallized and definition varies among researchers [52].  The concept 
used here is inspired from the definition provided by [53].  In theory, meta- architecture trades can be 
generated through mathematical programming models, heuristics and domain dependent algorithms. 

This part of the report instantiates SoS meta-architecture generating methodologies.  Meta-architecture 
generation can have various constraints, a large number of objective functions, combinatorial 
characteristics, and deal with stakeholder preferences to name a few aspects.  This modeling method 
uses three different techniques, namely fuzzy-genetic approach, multi-level optimization and multi-
objective optimization, to generate Acknowledged SoS meta-architectures.  All these techniques involve 
temporal exploration of trade space in a changing environment based on concepts of waves and epochs.   

2.5.2 Multi-Level Optimization  
In many practical applications, multiple agents interact with each other to determine their individual 
strategies as one’s strategy affects the others’ outcome.  To model the decision making process when 
multiple agents interact, one needs to consider the decision making sequence among the agents.  
Decision making sequence can fall into two categories:  simultaneous decision-making, i.e., when all of 

 
Contract Number: H98230-08-D-0171                                                 WHS TO 029, RT 044: Enterprise and System of Systems Modeling  Part 3 

Report No.  SERC-2013-TR-021-3 
18 November 2013 

 21 



UNCLASSIFIED 

the agents determine their strategies at the same time and hierarchical decision-making, i.e., there 
exists an order for the agents to announce their decisions.  In the former category, game theoretic 
approaches are commonly used to model the decision-making processes.  In the latter case, the 
inherent hierarchical decision making process can be modeled using multi-level optimization approach.   

In particular, multi-level optimization models are observed when a set of agents has authority to affect 
the decision making process of the other agents [54].  For the problem of interest in this study, the SoS 
architect has the authority to negotiate with individual system providers to improve the performance 
measures of the requested capabilities by means of allocating additional funds.  Depending on the funds 
allocated, the system providers then decide on which performance measures to improve on which of 
the requested capabilities.  That is, there exists an order of decision making between the SoS architect 
and the system providers: SoS architect is the first decision maker and the system providers are the 
followers.  This order of decision-making is generally referred to as Stackelberg game and it can be 
formulated as a multi-level optimization model.   

In multi-level optimization problems, there exist different optimization problems at different levels, 
corresponding to the decision making of the agents at different hierarchical order [55].  The 
optimization problem of an agent with lower hierarchical order is actually included as a constraint within 
the optimization problem of an agent with higher hierarchical order.  Therefore, the agent with the 
higher hierarchical order can regard the next decision makers’ optimum strategies while determining 
his/her own strategy.  For instance, for the SoS architecting problem of this study, the SoS architect 
should consider how much improvement will be observed in which capabilities requested while 
determining the funds allocated to system providers.  In doing so, SoS architect, therefore, needs to 
estimate how each system provider will spend the funds allocated.   

Multi-level optimization problems are considered to be one of the most challenging classes of 
optimization problems.  Even the single-objective multi-level optimization problems in the linear case 
are discussed to be NP-hard [56].  The SoS architecting is itself a multi-objective optimization problem 
and considering the possibility of contracting with individual system providers results in a multi-
objective multi-level optimization problem.  It is noted that analysis of multi-objective multi-level 
models is rather limited in the literature [57] [58].  Due to the complexity of such problems, theoretical 
properties of such problems are limited [see, e.g., [59] and generally heuristics methods are adopted to 
provide good quality solutions.   

Evolutionary methods are one class of heuristic solution approaches adopted for multi-level multi-
objective optimization problems.  Deb and Sinha  [57] study a hybrid evolutionary heuristic method for 
solving bi-level multi-objective optimization problems.  Li et al. [60] use a non-dominated sorting 
algorithm with genetic algorithms to solve a class of bi-objective bi-level optimization problems.  
Similarly, Jia et al. [61] propose a variation of genetic algorithms for solving convex multi-objective bi-
level optimization models.  Konur and Golias [62] construct a met heuristic method including local 
search and genetic operations to solve a mixed-integer non-linear bi-objective bi-level optimization 
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problem.  Particle swarm optimization method is adopted by Zhang et al. [63] [64] to solve multi-
objective bi-level optimization problems.   

Fuzzy modeling approaches are also used to solve multi-objective multi-level optimization problems.  
Osman et al. [65] develop a fuzzy min-max decision model to generate Pareto optimal solutions for a 
multi-level non-linear multi-objective decision making problem.  Lu et al. [66] and Zhang and Lu [67] 
approximate K-th best approach of a multi-objective multi-level model by using fuzzy techniques to 
resolve the mutli-level complexity of the model.  Gao et al. [68] provide a decision support tool for a 
fuzzy multi-objective multi-level optimization problem.  Finally, Baky [69], [70] uses a fuzzy goal 
programming method and Zheng et al. [71] use a fuzzy interactive method to solve a class of multi-
objective multi-level optimization problems.   

Other than the aforementioned approaches to solve multi-objective multi-level optimization problems, 
there are studies that consider integer programming and reformulation approaches [see, e.g., [59],  [58], 
[72], branch-and-bound type of algorithms (see, e.g., [73], [74] ) and interactive procedures [see, e.g.,  
[75], [76]) for such problems.  The problem of interest in this study, i.e., SoS architecting with individual 
system contracts, is formulated as a multi-objective bi-level problem, where the upper level is a mixed-
integer nonlinear programming model with three objectives and the lower level consists of an arbitrary 
number of linear programming models.  Considering the complexity the resulting model, an evolutionary 
meta-heuristic a two-stage solution approach is proposed.  The details of the problem formulation and 
solution approach are explained in Section 3.4.1. 

2.5.3 Fuzzy Genetic Approach 
Another common approach to the multi-objective optimization problem is to use a genetic algorithm 
approach with a fuzzy fitness assessor as the chromosome sorter between generations.  The 
combination of multi-objective optimization with fuzzy approaches is discussed by Cara et al. [77].  Their 
problem was to fit surfaces with minimum error and minimize fuzzy rules while comparing Type-1 vs. 
Type-2 fuzzy sets, but several of their ideas are incorporated here, such as minimizing the rules in the 
fuzzy rule base to make architecting the SoS easier to explain to stakeholders.  They also showed that 
Type 1 fuzzy systems are better in low noise (except for the input itself) situations, and Type-2 works 
better where there is noise in the rest of the system.  This effort used the simpler Type 1 fuzzy systems, 
but an obvious extension using noisier, real world stakeholder linguistic inputs is possible.  Wang and 
Zhang discuss incomplete information and weighted sets, but also include the concept of the penalty 
function as a more subtle method to push the fuzzy set solution off unwanted or infeasible solutions 
[78].  Sanz et al. [79] present the method used here of tuning the membership functions and rules to fit 
the data as only the first part of their paper.   

This project attempted to simplify and modularize the treatments of the description, definition of what 
is important to the stakeholders, SoS attribute selection, development and funding within each system, 
interactions between member systems when the SoS is fielded, and the negotiation between the SoS 
manager and the systems.  A major effort was the segmentation and re-integration of the models so 
that a variety of techniques could be tested with each other.  The modularity was desired because it was 
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not known what techniques would work best together, nor if different types of problems would require 
different approaches.  There are a large number of genetic algorithm techniques [80], [81], from the 
very simple constant mutation rate on all the population, to sexual crossover, to variable size but gene 
specific transpositions.  In selecting chromosomes for reproduction to the next generation, techniques 
range from simple tournament selection of the best few, to roulette based ‘higher fitness gives more 
chance of random selection (but not a guarantee)’ for reproduction.  The big driver is the choice of 
representation of the problem, the size of the domain, whether the gene components of the 
chromosome are possible (or worth it) to distinguish and treat differently, and the form of the fitness 
function used to select “good” chromosomes from each generation.  The meta-architecture structure 
for the SoS problem here was already selected; with one small exception (for the communication 
initialization, discussed later) there are no privileged gene components in the SoS meta-architecture.  
The remaining driver to a solution is the choice of fitness function.  The fuzzy logic system approach is 
well suited to the type of judgments made about “good” SoS architectures [82], but certainly not the 
only approach, as discussed in the next section.  

Most of the recent literature on fuzzy systems deals with treating uncertainty explicitly with Type II fuzzy 
systems.  Type II systems treat the shape of the membership function edges as an additional parameter 
in fitting a solution.  There is a contention that adding parameters to Type I fuzzy systems is equivalent 
to the extra degrees of freedom Type II systems allow for describing solutions.  Several of these 
concepts were used in the definition of the membership functions and variable maps from real world 
variables to fuzzy variables.   

It is institutionally difficult to find discussions of what works and what does not work in SoSs.  For one 
thing, they are relatively rare.  In addition, DoD examples typically:  

• do not follow the normal DoDI 5000 series management processes, so normal reporting is not 
always enforced, and therefore records are sparse 

• are not programs of record, so there is less than normal oversight by watchdog agencies 
• frequently begin in an ad hoc way  or as quick reaction efforts, so if they don’t work, they are 

simply abandoned quickly for something more promising 
• are occasionally classified or have significant classified components. 

All these facts make it difficult to perform case studies on SoS lessons learned 

Commercial efforts frequently fall under proprietary disclosure rules.  Another reason we do not have 
good post-mortems on problem projects is that those stories can be embarrassing to those most likely 
to know what occurred.  Finally, it is often simply the case that no one knows why projects fail or 
succeed.  It may be simply that it was an idea whose time had come when it works. 

2.5.4 Multi-objective Optimization 
The architecture optimization in general is a constrained (e.g., by design requirements and restrictions), 
multi-objective optimization on a discrete design space.  Optimization models used in the architecture 
search enable “moving from one configuration to the other in an ongoing search for better solutions, 
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but more importantly it is established with the aim of control and guidance” [83].  Multi-objective 
optimizations involve two processes, a search process that can explore all possible design parameters 
and a selection process that chooses good designs that constitute a compromise of several different 
objectives.   

Depending on when the preference for each objective is expressed, multi-objective optimization 
methods can be broadly classified into two categories: decision making before search methods (also 
known as a priori approach or scalarization approaches), and search before decision making methods 
(also known as a posteriori or Pareto approaches) [84] [85].  As summarized in [83] [86] [87], examples 
of scalarization approaches include weighted sum approach, multi-attribute utility analysis, ϵ-constraint 
methods, compromise programming (non-linear-combinations), physical programming, goal 
programming, lexicographic approaches, acceptability functions, and fuzzy logic; examples of Pareto 
approaches  include exploration and Pareto filtering, multi-objective genetic algorithms, adaptive 
weighted sum method, normal boundary intersection, and multi-objective simulated annealing.   

The a priori approaches require designer to decide how to aggregate different objectives into a single 
objective function (also known as fix-up) before the actual search is performed [87].  Such approaches 
require a priori knowledge to make rational aggregation.   

In a posteriori approaches, the search for optimal solutions is performed with multiple objectives being 
evaluated simultaneously, typically using the concept of “dominance” to rank solutions.  Particularly, a 
solution x1 dominates another solution x2 if (1) x1 is no worse than x2  in all objectives and (2) x1 is strictly 
better than x2 in at least one objective [86].  The Pareto-optimal set is the entire set of non-dominated 
solutions among the search space, where the rest of the solutions are called dominated solutions [88].  
Most Pareto-methods are concentrated on the approximation of the Pareto set [88] while keep the 
solutions diverse.  “All elements in the Pareto-optimal set define reasonable solutions and are subject to 
further decision factors in order to choose a design for a given problem” [87].  In this manner an 
unbiased search can be performed.  Moreover, Pareto methods also allow a single search to serve 
several problem-specific decisions without the need to repeat the search [87].  This feature gives Pareto 
methods an advantage over single objective methods because the designers are provided with a wide 
range of non-dominated solutions from which one or more solutions can be chosen.  This post-search 
selection can be supported by further analyses using domain knowledge, additional problem 
information, or decision criteria, which are not necessarily formulated in the design task. 

There are other classifications of optimization algorithms according to various considerations.  For 
example, Cohon [89] classified them into the Generating methods and Preference-based methods (some 
known preference for each objective is used) based on whether Pareto-optimal solutions are generated 
or not.  Hwang and Masud [90] and later Mittinen [91] fine-tuned Cohon’s classification into the 
following four classes of methods:  
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(1) No preference methods are generating methods that do not assume any information about the 
relative importance of each objective.  Instead, a heuristic is used to find a single optimal 
solution [86].   

(2) A priori methods are preference-based methods that use information about the preferences of 
objectives A priori and usually find one preferred Pareto-optimal solution.   

(3) Posteriori methods are generating methods where preference is used a posteriori.  A set of 
Pareto-optimal solutions are produced by the algorithm.  The decision maker then selects the 
most preferred one according to some further considerations.   

(4) Interactive methods are preference-based methods that use the preference information 
progressively during the optimization process.  It requires the interaction with the decision 
maker. 

From the searching process perspective, optimization algorithms can be classified into either 
deterministic or stochastic (or heuristic) methods.  Deterministic methods can be classified into gradient 
based methods (such as steepest descent, newton method, conjugate, penalty method) and derivative-
free methods (such as simplex method, integer programming) [92].  Gradient-based algorithms can find 
local optima with high reliability and, in many cases, with high efficiency but might be trapped by local 
optima.  Heuristic based algorithms can escape local optima and are stochastic in nature.  They cannot 
guarantee the optimality of the solutions obtained and often yield different set of solutions each 
time they are run.  No existing optimization technique is guaranteed to find the global optimum of a 
nonlinear, non-convex problem [93] [94]. 

No single optimization technique is applicable in general to all types of problems.  The most effective 
way, however, to solve a given problem will always be dependent on the specifics and details of that 
unique problem [95].  A hybrid method that combines optimization methods in a complementary way 
may ideally both benefit from the relative strengths of each individual method and restrain its 
weaknesses.   

In the case of architecture development, the design space could be exceptionally large thus precluding 
the use of brute force algorithms.  On the other hand, deterministic algorithms that would be fast 
enough either might not exist or would be too complicated to define.  Hence, the heuristic based search 
algorithms are more appropriate in such application, as they can find good enough solutions from a 
large design space within a reasonable amount of time with little or no reliance on the knowledge of the 
search space.  Some heuristic based optimization algorithms that can possibly be applied to the 
architecture optimization are briefly discussed.   

Hill Climbing (HC) [96]is an iterative algorithm that starts with an arbitrary initial candidate solution, 
then attempts to find a better solution by examining its neighbors (defined on the solution space).  If a 
near neighbor with a better fitness value is found, a move to the new solution is made.  Such “walk up 
the hill” process is repeated until no further improvement can be found.  Such HCs are only guaranteed 
to find local optima.  Near-global optima can be reached by using restarts (known as multiple-restart hill 
climbing), or more complex schemes based on iterations (e.g., iterated local search), on memory, (e.g., 
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reactive search optimization and tabu search), on memory-less stochastic modifications (e.g., simulated 
annealing) [97].   

Simulated Annealing (SA) [98, 99] is another local search algorithm exploiting neighborhood concepts.  
At each iteration of the search process, SA attempts to replace the current solution with a random 
solution chosen according to a candidate distribution, which is often sampled from the neighborhood of 
the current solution.  The acceptation of the new solution is based on a probability that is a function of 
both the drop in fitness and a global parameter T.  With this T parameter being gradually reduced during 
the search process, the SA can avoids local optima to a certain extent by giving more chances to less fit 
solutions in the earlier exploration stages but increasingly choosing the better solutions in the latter 
converging stages.   

Tabu search [100] [101]is another meta-heuristic local search algorithm that proceeds by setting barriers 
or restrictions to guide the search process.  Tabu search avoids being stuck at local optima by using tabu 
list which are a set of rules and banned solutions used to filter which solutions will be admitted to the 
neighborhood to be explored [100].  Then from the set of available moves, the best move is selected..  
The application of tabu search in architecture related problems can be found at [102] [103]. 

Evolutionary algorithms (EAs), namely genetic algorithms, evolutionary programming and evolution 
strategies, have been recognized to be well suited to multi-objective optimization by virtue of the 
parallel search technique involved in addition to handling complex problems that involve discontinuities, 
multi-modality, disjoint feasible spaces or noisy function evaluations [104].   

Among them, Genetic Algorithm (GA) [105] is one of the most used Evolutionary Algorithms (EAs).In GA, 
solutions (known as candidates, individuals or phenotypes) are encoded in a string form known as 
chromosomes (or genotypes of the genome).  GA uses an iterative evolution process starting from a 
population of randomly generated candidates.  In each generation, multiple candidates are 
stochastically selected from the current population based on their fitness.  These candidates are then 
modified (by applying mutations, crossovers, or other reproduction operators) to form the offspring.  
The new population for the next iteration of the algorithm is produced from the offspring and the 
original population using a selection process.  Many variants of this overall process exist, but the key 
ingredients i.e., recombination and selection guided by fitness functions, remain the same.  EAs, as 
popular search techniques, have many applications in architecture related problems, for example, the 
architecture design [106] [107], formulation of predictive models of software projects [108] [109], and 
testing [110] [111].  Holland demonstrated the tremendous advantage of using genetic algorithms to 
certain optimization problems that can exploit its procedure [112].  However, MOEA sometimes perform 
poorly when there are many objectives to be optimized.  To overcome this drawback, a new fitness 
evaluation mechanism is introduced in [113], which can continuously differentiate individuals into 
different degrees of  optimality beyond the classification of the tratidional Pareto  dominance.  In 
addition, fuzzy logic is used to define a  fuzzy Pareto domination relation.   
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On the other hand, various techniques have been proposed for handling of constraints in optimization 
problems involving evolutionary algorithms [114] [115].  These include penalty function methods [116] 
[117] [118], pair-wise comparisons [119], or simple comparison [120].  Other methods treat the 
constraint functions as one or more additional objective functions to be optimized [121] [122]  Others 
combine multi-objective evolution with differential evolution [123]. 

The multi-objective evolutional algorithm (MOEA) is a popular Pareto-based optimization approach.  
MOEA is well suited for the architecture optimization.  Research work in MOEAs in areas related to 
systems architecting include product design and product architecting [124] [125] [126] [127] [128] [129] 
[130] [131] .  Most recently, genetic algorithms (GA) was also used as a methodology within a tool suite 
of agent base modeling (ABM) for system of systems (SoS) evolution, where the impact of constituent 
systems are thought not to be well understood with respect to the overall system of systems capabilities 
[35]. 

2.6 System Negotiation Decision Models with SoS 

2.6.1 Selfish Negotiation Model  
Resource constrained scheduling problems (RCSPs) concern with allocating scarce resources to activities 
over time in order to meet the requirements on the quality, quantity, completion time, and others in the 
delivery of projects, products, or services [132]. The problems are often formulated as optimization 
models where objective functions can be the minimization of project duration, minimization of the 
project cost given performance payments and penalties, and minimization of the consumption of critical 
resources [133]. Resource constraints can be on a period-to-period basis such as the amount of skilled 
labor available for each day; they can also be over the life of the project such as the total funding for the 
project. The solution to RCSPs specified when and how a job is processed. Various methods have been 
implemented to solve RCSPs, including integer programming [133], heuristics [134], genetic algorithm 
[135], and simulation [136].  

RCSPs can be a candidate model of individual systems because they are relevant to the SoS problem in 
this research. Participation requests from the SoS can be seen as projects with multiple jobs. Each job 
has specified completion time (e.g., deadline), performance requirement (e.g., capacity requirement), 
and performance payments (e.g., funding). A project’s jobs usually consume the same resources that are 
provided either by the project execution entity (i.e., the individual system) or the project provider (i.e., 
the SoS). For example, performing a project consumes a portion or all of the performance payment 
provided by the project provider; it may also need skilled workers belonging to the project execution 
entity. The project execution entity schedules all jobs over time by specifying when and how each job is 
performed. The best schedule is often determined using optimization techniques. That is, the project 
execution entity formulates an optimization problem for the project by specifying the objective of 
executing the project. Constraints must be considered include those specified by the project provider 
(e.g., project completion time), determined by the environment or context (e.g., the expected return 
from projects with similar risks in the market), and specified by the project execution entity (e.g., the 
minimum rate of return from the project). An assessment of the project based on the optimal project 
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schedule provides useful information for the negotiation between the project provider and the project 
execution entity. For example, if the project execution entity finds out that the performance payment 
provided by the SoS is not sufficient to cover project expenses or the project deadline is too short to be 
met, she will ask for additional payments or additional time with a justification.  

2.6.2 Opportunistic Negotiation Model  
Existence of individual systems within an SoS are abundant in many real-world scenarios. This includes 
selection from a number of transportation infrastructure projects [137], a bank/financial organization 
providing capital to different entrepreneurs [138], and a central artificially intelligent agent controlling a 
bank of robots [139], determining which robot(s) to use to assign a given task.  The main idea in the 
opportunistic model is to capture the behavior of an adaptable agent, which is endowed with significant 
amounts of flexibility to perform a task and adjust to budgets [140].   

Opportunistic model was based on an absorbing Markov chain [141] for modeling the duration of a 
project and gaging its budget.  There is abundant literature on project management, which cites the 
need for mathematical models that can capture stochastic behavior of durations of activities and the 
resulting deadline extensions and budget overruns [142].  Code for the opportunistic model was written 
in MATLAB [143].  

2.6.3 Cooperative Negotiation Model 
Negotiations vary among agents in number of measurable and fuzzy issues.  Quantitative issues can be 
in the form of measurable attributes such as funding, deadline and performance.  Qualitative issues can 
include the behavior of the negotiation party and market induced effects [64].  Each successful 
negotiation necessitates resolving a range of such issues to the agreement of both parties.  Agents 
usually are able to make adjustments between issues by prioritizing one over another (e.g., faster 
completion time with lower quality in order to come to an agreement).  On the other hand, many 
system agents have the same capabilities but they vary along the dimensions of performance quality, 
cost of acquisition and availability within a specified time.  Negotiations between automated agents 
typically have four prominent characteristics [144].  These characteristics are mentioned below along 
with the specific details that are pertinent to this cooperative model. 

According to [74]cooperative negotiation in multi-agents is a decision process for resolving multiple 
issues, which may or may not be mutually exclusive.  Game theory postulates cooperative negotiation as 
a non-zero sum game along multi-dimensional issues. Cooperative multi-agent negotiation has found 
uses in maintaining real time load of a mobile cellular network [68], modeling complex physiological 
phenomena [69] and resolving air traffic conflicts efficiently [70]. 

 

(1) The negotiation protocol and strategies 
The negotiation protocol describes the rules of encounter between the negotiation parties.  A 
negotiation protocol can handle a single issue or multiple issues [145].  The negotiation strategy 
is a specification of the sequence of actions (usually offers or responses) that the agent plans to 
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make during negotiation [146].The solution space of negotiation strategies is very large. 
Strategies are usually based on the nature of the behavior of the agent and its opponent or 
teammate. Negotiation strategy tries to model the function (or a set of rules) for proposing the 
values of multiple issues at each point in time [73]. The strategy used for a particular agent 
might turn out to be a poor choice for another. A static approach can also decrease awards after 
a number of negotiations. Therefore, an agent can learn by adapting based on rewards, as 
opposed to trying to model the other agents. Other considerations include trust of the agent on 
other agents and commitment involved in pursuing a negotiation [74]. 

(2) The information state of agents 

Agents are classified based on information possessed at the time of negotiation into 
complete or partial information states. If the agent has the complete information of the 
environment, which includes the opponent agent’s, negotiation strategy, the external factors 
that affect the negotiation and the effect of the agent’s strategy on the opponent it is said that 
that agent is in a complete information state. Otherwise, if any information is unclear or missing 
the agent is assumed to be in a partial information state.  Information in multi agent systems are 
comprised of utility functions that the opponent agents use to evaluate various attributes, the 
reasoning models of opponent agents, and the constraints of opponent agents. 

(3) The negotiation equilibrium 

In a symmetric situation, the negotiation solution does not depend on which agent is called 
agent one.  This model is not symmetric.  Both negotiating agents have different outlooks and 
different functions to estimate their utilities.   

Furthermore, to estimate a utility for an issue an agent needs to define certain metric for calculating the 
values based on the information received. The metrics follow the criteria of John Christian [29], which 
has seven characteristics: 

1) Relates to performance  
2) Simple to state  
3) Complete  
4) States any time dependency  
5) States any environmental conditions  
6) Can be measured quantitatively   
7) Easy to measure  

The utility functions can be classified into linear and nonlinear.  Agents that utilize linear utility functions 
can aggregate the utilities of the issue-values by weighted linear summation. However, such an 
approach is considered naïve for modeling real world scenarios as aggregations are unrealistic [76].  
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Multi-attribute utility theory (MAUT) [77] believes that each outcome issue or attribute is independent. 
MAUT proposes to have a separate utility function for each of the attributes. These utility functions can 
be aggregated together or the agent can negotiate each issue separately based on the values.  

3 Multi-Agent based Architecting Model for Acknowledged SoS 
The proposed Acknowledged SoS architecture is a construct comprising of several complex adaptive 
systems (CAS) which are evolving and adapting in space and time constantly [149].  ABM is an attempt 
to simulate and analyze complex adaptive systems.  The agent based model (ABM) structure is 
developed to provide an Acknowledged SoS manager a decision making tool in negotiation of SoS 
architectures during wave model cycles.  The ABM provides the capability to include the above 
mentioned multiple SoS meta-architectures generation modles namely Fuzzy –genetic optimization 
model, Multi-Level Optimization model, and Multi-objective optimization model. ABM also provides 
alternatives for participating systems to chooses rom three negotiation Models. The negotiation model 
for SoS is fixed. This approach helps create multiple alternatives to generate architectures for 
acknowledged SoS.  

3.1 Agent Based Model Framework 
Agents are governed by a collection of stimulus responsible rules.  Rules are a method to describe the 
agent strategies in the environment they inhabit.  The objective of ABM is to determine how both the 
communications and diverse activities of individual agents can create organization and pattern.  The 
aptness of using an ABM model for this application area can be summarized in the following properties 
that define it: 

i. ABM is able to demonstrate the traits of the complex system in a changing phenomenon; 
ii. Agents are interdependent; 
iii. ABM is supple enough to adjust to varying conditions 

ABM attempts to bridge the gap, by transforming incoming information into meaningful and precise 
predictions of future states, in a dynamic command and control environment.  ABM techniques will be 
utilized to simulate artificial negotiation intelligence.  This intelligence emerges from the association and 
competition of many individuals and appears as harmonious decision making on the macro-level.  

As illustrated in Figure 4, The overall ABM consists of 3 major elements; SoS acquisition environment, 
SoS agent, and a system agent.  Each agent has its own set of behavior patterns.  The ABM has one 
instance of the SoS agent and multiple instances of the system agent.  The number of instances of the 
system agent corresponds to the number of systems in the SoS.  The SoS manager instance and the 
individual system instances are embedded in the SoS acquisition environment model and are influenced 
by the changes in this environment.   

 

 
Contract Number: H98230-08-D-0171                                                 WHS TO 029, RT 044: Enterprise and System of Systems Modeling  Part 3 

Report No.  SERC-2013-TR-021-3 
18 November 2013 

 31 



UNCLASSIFIED 

 

 

Figure 4.  ABM framework for Acknowledged SoS 

 

This model proposes a hierarchical architectural framework to support Acknowledged SoS architecting 
and analysis.  The goal is not simply to reach a settlement, but to tackle frequent systemic problems and 
adapt to the changing conditions and relationships among all participating systems.  The individual 
systems have limited or no information about other participating systems.  All System agents are 
autonomous and assume that other agents also take decisions rationally based on their own internal 
state. The first level of the architecture the ABM provides an ability to include multiple SoS meta-
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architectures.  The meta-architectures include many sets of combinations defining systems’ 
participation and their interfaces.  To generate the meta-architectures, the SoS Manager organizes 
domain specific information.  Information from the meta-architecture is analyzed and tabulated to come 
up with the required guidelines for individual systems.  The SoS agent is responsible for generating SoS 
meta-architecture based on these input parameters and evaluating the overall quality of the SoS 
architecture.  The SoS agent then negotiates individually with each of the collaborating systems based 
on the current guidelines.  The second level of the ABM architecture involves the negotiation models of 
System agents.  Each individual system has the capacity to execute one of three multiple criteria 
optimization models.  System agents act on the basis of bounded rationality.  This means that systems 
attempt to be rational while simplifying their decision making. 

The SoS agent behavior is abstracted based on the Wave Process model.  Each instant of the individual 
system agent has its own decision model which can exhibit selfish, opportunistic or cooperative 
behavior.  The ABM simulates the negotiation dynamics among SoS agent and individual system agent in 
order to analyze the SoS architecture evolution summarizes the overall model architecture.  Each round 
of negotiation between the SoS Aquistion Manager and System agent is called an epoch.  Once the SoS 
Manager successfully negotiates with all system agents, it is able to define the overall SoS architecture 
based on the SoS negotiation model.  The SoS negotiation model is further explained in the report.  This 
process of arriving at a final SoS architecture completes a wave of the model.  SoS agent can predefine 
the maximum number of negotiations it can have with each system agent.  Similarly SoS agent can fix 
the minimum value of SoS architecture quality that it wants to achieve.  If the threshold of number of 
negotiations is exceeded or the overall SoS architecture quality is not up to the already decided value 
the SoS agent regenerates a meta-architecture.  This starts a fresh round of negotiations with the 
individual participating systems. 

The implemented framework of the ABM is described later in the report in the main elements of the 
model such as Implementation of Multi- Agent Based Architecture Model for Acknowledged SoS 

 

3.2 Fuzzy Genetic Optimization Model  
Genetic Algorithm allows the exploration of large discrete design space and can avoid trapping by local 
optima. Therefore, it is well suited for exploring architecture alternatives. Fuzzy logic based approach is 
good at linguistic computation that is capable of quantitatively evaluating the set of possible solutions 
based on the decision-maker’s preferences even in the presence of incomplete, subjective and 
ambiguous information.  By combing these two techniques, an automated architecture generation, 
evaluation and selection process can be achieved with the goal of finding new-optimum candidate 
architecture.  This section presents the key aspects of the fuzzy genetic optimization approach, which 
include (1) the representation of SoS meta-architecture as chromosome and the generation of 
architecture alternative using genetic operators (i.e., mutation and crossover) (3) the methodologies for 
evaluating SoS domain model. 
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3.2.1 Representation of SoS meta-Architecture  
The meta-architecture for the SoS can be represented as a binary string X, consisting of a one if a system 
is participating, and a zero if the system is not participating.  The first m bits represent the systems 
potentially in the SoS.  The next m-1 bits are the interfaces of the other systems with system 1.  The next 
m-2 bits represent the interfaces with system 2 (interface 1-2 is already represented), and so on down 
to the last bit representing the interface of system m-1 with system m.  The meta-architecture 
represents the m systems’ participation and the interfaces between them as binary string of length   

𝒎 systems +
𝒎(𝒎− 𝟏)

𝟐
 interfaces   =    

𝟐𝒎 + 𝒎(𝒎− 𝟏)
𝟐

    =      
𝒎(𝒎 + 𝟏)

𝟐
 

The meta-architecture allows any combination of ones and zeroes in a string of length m(m+1)/2.  An 
architecture instance is one chromosome of binary bits representing the systems and interfaces that are 
participating in the SoS.  An instance is one particular string, represented as X.  The presence of the 
individual system or interface is indicated by one bit of the string Xi.  When using the genetic algorithm 
(GA) approach, the string is called a chromosome.  The subscript on the chromosome may also indicate 
one string in a population of chromosomes; it is clear from the context whether an individual bit of a 
chromosome or a single chromosome from a population is intended. 

Since the linear representation of the chromosome for more than about m = 5 systems is difficult to 
display (or to locate individual interface bits), the upper triangular form is introduced.  The systems are 
along the diagonal, and the interfaces are in the row and column intersections.  This has the advantage 
that Xij in the standard matrix element numbering is the interface between system i and system j.  For 
the systems (not the interfaces) as represented in the triangular form, we occasionally use the notation 
Xi  when  Xi = j. 

For chromosome representation presented above, the architecture alternatives can be easily generated 
using traditional genetic operators, such as mutation, crossover and transposition. 

 

Table 1 Chromosome in linear array form.  The meta-architecture allows any combinations of ones and zeroes 

X1 X2 Xi  … Xm X1 with 2 X1 with 3 X1 with m X2 with 3 … Xi with j … X(m-1) with m 
Systems Interfaces 

 

 
Contract Number: H98230-08-D-0171                                                 WHS TO 029, RT 044: Enterprise and System of Systems Modeling  Part 3 

Report No.  SERC-2013-TR-021-3 
18 November 2013 

 34 



UNCLASSIFIED 

  

 

Figure 5.  Upper Triangular form of the chromosome, systems along the diagonal 

 

3.2.2 Domain Model Representation 
The SoS agent delivers individual plans to each system with proposed participation and interfaces in 
each capability, and proposed budget, performance contribution, and deadline for delivering the 
capabilities.  The four attributes are evaluated at the SoS level, but negotiations about individual 
systems’ participation are at the systems’ level.  Not until the SoS agent has the answers from all the 
systems is the new chromosome worth evaluating again against the same initial attribute list.  The 
domain model is represented as the performance, budget and deadline in each capability, from each 
system, and for each of its interfaces.  We are currently using a simple extension of a system capability 
to each interface, but there is room for adjustment to this quick approximation.  The system budget is 
simply the sum of estimated development costs for each change or interface added by the SoS manager 
suggested architecture found through the GA approach using the initial fuzzy assessment with estimated 
values.  During the ABM negotiation phase the systems propose new, better grounded estimates of the 
performance they can provide, funding they will require, and deadlines they can meet.  Although the 
SoS manager has estimates for these things by interface, the expected performance, offer of funding, 
and deadline is rolled up to a total per system.  The system agents may divide up their totals as they 
think best, with theoretically better knowledge of their ability to deliver capability to the SoS.  

The capabilities C of the SoS arise primarily from the summation of the capabilities inherent in the 
systems.  We model n capabilities possible in each system.  Most systems bring only a few capabilities.  
When a system interfaces with another system with different capabilities, they gain some portion of 
those non-organic capabilities through the interface.  This is the key value of the SoS.  The capability vs. 
system matrix is also binary, indicating only existence or not existence of each capability within each 
system. 

X1 X12 X13 … X1i X1j … X1m

X2 X23 … X2i X2j … X2m

X3 … X3i X3j … …

… … … … …
Xi Xij … Xim

Xj … Xjm

… X(m-1)m

Xm
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𝐶𝑖    𝑖 = 1 …𝑛  𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

𝐶𝑖𝑗     𝑖 = 1 …𝑛,    𝑗 = 1 …𝑚     As the capabilities of each system 

is the matrix of up to  n  capabilities contributed by each of the m  system 

A system type identifies with the primary capability it has.  The performance of each type of system is 
represented as a relative number compared to the other types of systems.  Performance could be 
assigned for each capability, but to simplify the model, only the major capability of each system is 
accounted for.  The performance is given in a matrix as follows: 

Perf i     i = 1…m     Performance of each system in their major capability 

 

There is a cost for developing, installing, testing and training to use the interface, and another cost for 
the operation of the system within the SoS.  The estimated costs for interfacing between systems and 
operating the systems in the SoS are given in terms of the proposed funding in the following two 
matrices:   

𝐹𝑑𝑒𝑣 𝑗  𝑗 = 1 …𝑚   𝐹𝑢𝑛𝑑𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑦𝑠𝑡𝑒𝑚′𝑠 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑜𝑓  𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 , and 

𝐹𝑜𝑝𝑠 𝑗  𝑗 = 1 …𝑚     𝐹𝑢𝑛𝑑𝑠 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑆𝑜𝑆 

 

For the development of either a system capability that does not exist already, or the development of an 
interface to make the SoS possible, there is a schedule; the SoS manager proposes a deadline for the 
system to develop the each interface.  Capabilities are not normally developed in an acknowledged SoS 
because such development typically require many years.  The interfaces are normally easier, quicker, 
and less expensive to develop, while the systems and their major capabilities are “come as you are.”  
The estimated deadline for development is given in a matrix  

Di    i = 1…m    The deadline in units of epochs for developing an interface 

 

3.2.3 Methodology for Evaluating SoS Domain Independent Information 
In DoD acquisition management, a program’s (system’s) current status is often presented as a color 
code, as in the Contractor Performance Assessment Report [150].  These reporting methods primarily 
allow reviewers to compare evaluation of alternative architectures (early), or a program status (later in 
the development cycle), from one quarterly review to the next, or between programs.  The single color 
summary glosses over many fine details to get to the attribute summary color or single word description 
that summarizes the state of the entire program.  An overall evaluation, that combines several 
attributes, is still largely a gestalt of the component attribute values, especially if different areas are 
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weighted differently.  Attribute evaluations themselves are well suited to fuzzy logic approaches 
because of the difficult nature of boundaries between subjective evaluation ranges, and the ability to 
encode simple rules to combine values from different areas.  These match well with fuzzy, linguistic 
approaches to evaluation.  A particular SoS architecture (or program status) may fall partially into an 
Acceptable, and partly into a Marginal set by summing many underlying status components, just as any 
point on the quality scale between 2.3 and 2.8 does. This region of confusion, ambiguity, or uncertainty 
can be due to  

• Differing interpretation of components’ status facts by the reviewing subject matter experts 
(SMEs) based on their experience and understanding of the presentation 

• Unrecognized (and typically bad) trends within the numerous components of any summary 
evaluation 

• The energy of the presenter of the facts may influence the impression of those facts in the 
reviewers’ minds  

• Unconscious or even conscious bias of the evaluators.   

The normal method of accounting for this in program management is to have multiple reviewers and do 
some kind of averaging and/or throwing out high and low values with room for discussion among the 
reviewers, and having a head judge (program manager) responsible for managing to a consensus and 
over ruling dissent if necessary.  This is what the fuzzy associative memory or fuzzy inference system 
does by summing the contributions of partial membership functions at an evaluation point in the 
judgment range.  One of the advantages of the fuzzy approach is that the rule base for combining values 
in different areas can be made small, easy to understand, and simple to evaluate.  This approach can get 
out of hand, because the size of the rule base increases exponentially when many areas are evaluated 
and combined. [81]  Because we were trying to elicit general principles, we kept the rule base very 
small.  A smaller rule base with few exceptions improves one’s ability to explain the SoS quality to 
stakeholders as well as to one’s self. 

The equivalent of color codes from red, yellow, green, and blue, were proposed for the granularity of 
the assessment, but to make it more general, called them:  “Unnacceptable,” “Marginal,” “Acceptable,” 
and “Exceeds.”  One could easily use different scales, with different numbers of discreet granulations if 
it proved useful or normal practice in a domain.  The principle is demonstrated here with four 
granulations in each dimension, for both input and output. 
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Figure 6.  Representative Fuzzy Attribute Value Membership Functions showing overlap at edges of granulations 

 

The attributes can be domain dependent.  How you measure each attribute, and the criteria for valuing 
each one, for example, between acceptable and marginal are domain dependent.  The universe of 
discourse is the total range of all the attributes.  We mapped the domain independent range from 1 to 
4, that is, from 1 = Unnaccepable to 4 = Exceeds, with each of the individual values being “around” the 
integers between 1 and 4.  The shape of the membership functions account for the uncertainty of being 
on the cusp between two values.  The color codes, or the terms (e.g., ’Marginal’) are linguistic variables, 
describing the degree of membership in the fuzzy set that contains all programs or SoS architectures, or 
attribute values in that same range.  There is a domain dependent mapping of measurement values to 
the domain independent fuzzy membership functions. 

The steps to create a SoS domain model for experimentation are conceptual, largely independent of the 
domain.  However, when working a real problem, the values take on meaning within the domain. 

• The meaning and ranges of attributes against which the SoS is to be evaluated must be 
identified, defined, the range of the granulation and regions of overlap between membership 
functions decided, and the attributes checked for the degree of independence or correlation 
between them.  Having correlation between two attributes decreases the value of the similar 
attribute to discriminate among potential solution architectures. 

• Methods to evaluate the SoS against these attributes must be developed, assessed, and most 
importantly, agreed to by the stakeholders.  For the study of SoS, we must assume some kind of 
advantage from joining different systems together.  Otherwise, it does not make sense to 
organize a SoS. 
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To accomplish the above steps, a series of guided interviews with stakeholders are conducted by subject 
matter experts with architecting skills.  Some of the required information is gleaned by simply letting 
stakeholders talk about their needs, their imagined or desired solutions and the characteristics of those 
solutions.  Some information comes from guided questions exploring the stakeholders’ needs and 
current operations, state of technology, capabilities of existing systems, impact of changes to existing 
hardware, software, procedures, processes, tactics and training, and outside influences such as market 
growth, competition or threats.  This is similar to conducting the standard strengths, weaknesses, 
opportunities and threats (SWOT) analysis from business school.  There are many methods for 
constructing the membership functions in the literature, but they all require domain knowledge to 
formulate the problem, construct the questions or guide the discussion among the stakeholders.  [82] 
[151] 

• Several trial methods of mapping issues, features and attributes to architecture structures may 
need to be created, tested and discarded before finding a good one 

• Validity and range of applicability of existing and new models for predicting performance, cost 
or other attribute values are explored 

• Relevance and usefulness of existing performance models are compared with proposed 
simplified models 

• The process must result in a well-defined model for use in the SoS analysis that discriminates 
between proposed architectures selected from the meta-architecture 

The purpose here is to have a reasonably simple evaluation process that depends on binary decisions 
about participation and interfaces between systems (and capabilities) in the SoS, as represented in the 
ones and zeroes of an individual chromosome.  It must also correlate with some impact to the SoS 
quality (fitness) through changes in the participation model (the chromosome).  Then it can be used in 
the fitness function for the optimization (or at least selection of a near optimum architecture) process of 
the GA.  Success in the GA means a chromosome can be handed off to the ABM to exercise the system 
behavior and cooperation rule models.  Our fuzzy modeling subgroup of SMEs acted as both 
interviewers and stakeholders for the development of the domain dependent models we used for the 
two SoSs, discussed in section 4.2.   

To summarize, our framework includes four fitness evaluation categories, from unacceptable (1) to 
exceeds (4), for four SoS attributes that are almost generic, but quite tunable for many selected 
domains.  These are Performance, Affordability, developmental Flexibility, and Robustness in 
operation. 

• The Systems bring Capabilities that are summed to provide SoS Performance  
• There are costs to develop interoperability, and costs to operate the systems.  These both are 

summed to create the inverse of Affordability 
• The SoS manager would like to have options (Flexibility) in developing each SoS capability, so 

she dislikes single system sources for a required capability 
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• Since the SoS might not have the desired and prepared systems at the time of need, Robustness 
is measured as the relative loss of performance when a desired system is unavailable.    

Generically, this set of attributes comes close to satisfying the method characteristics noted above in 
section 3.2.3.  They are not highly correlated.  More systems provide more performance, but also more 
cost, so affordability goes down but not in a deterministic way because different systems have different 
costs and different performances.  Adding more systems that are inexpensive may not drive cost up as 
much, while additional expensive systems might not increase the performance as much as expected if 
everything were expected to be linear.  Having multiple sources of each capability is slightly related to 
the total number of systems. However, not highly correlated because as soon as one has more than two 
systems for one capability, the improvement stops.  Robustness with this definition is slightly correlated 
to flexibility, since having multiple systems for each capability does correlate with having multiple 
sources, flexibility only counts the number of systems, while robustness counts the performance gain or 
loss from losing one system.  The effect of the NetCentric bump (see below) changing performance in a 
noisy way depending on the feasibility of the interfaces largely decouples that possible correlation.   

Other SoS attributes can easily be conceived:  Degree of risk in herent in the architecture, amount of 
manpower required by the new concept, amount of interference with the remaining missions of the 
systems, etc.  We selected the four attributes we did because there were more obvious connections to 
the participation model of the meta-architecture. 

All the discussions so far would yield a model that is fairly linear.  To make the model both more realistic 
and more interesting to analyze, an interoperability ‘bump’ is introduced.  Recalling a tenet of 
NetCentric Warfare [152], a favorable performance impact from improved information sharing between 
the systems is postulated.  This is proposed as a modification to the simple sum of performance from 
each system.  The sum is multiplied by a small ‘bump’ factor for each valid interface between the 
systems.  The factor is proportional to the count of feasible interfaces in the meta-architecture 
framework.  The affordability is also multiplied by this factor.  The major capabilities are delivered by the 
systems, but the SoS performance and affordability is multiplied by a factor depending only on the 
existence and use of the interfaces. 

For the independent systems that make up the class of SoS under consideration, the interfaces they 
might have occur through a ‘communication’ system (or a transshipment point if the resource being 
exchanged through the interface is not information).  When communication systems are included as one 
of the types of systems in the chromosome, it is a closer model of a real world SoS.  The way the 
communication system is used as part of the interface is as follows:   

If Xij = 1 for i and j which are not communications systems, then we mark that interface as a feasible 
interface only if Xik = 1 and Xjk = 1 and Xi = 1 and Xj = 1where k is the index of a communication system. 

If a system is not participating, then trying to interface with that system is infeasible.  This does not 
prevent another system from spending funds, effort and time to develop that interface; this is an 
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attempted interface, but you need both systems to participate.  In the same way, if two systems cannot 
communicate over a common communications system, then the interface between them is also 
infeasible.  This concept is shown below in where the chromosome might show a ‘1’ for an attempted 
interface, but either the other system or the communications paths make the interface infeasible.  There 
is no distinction if the infeasibility arises during development or operation in the simplified model. 

 

 

Figure 7.  Illustrating the concept of feasibility of interfaces through a communication system 

 

Regardless of the type of SoS, the fact that independent systems are used together almost requires that 
the interfaces occur through a communication type of system.  That is, if system A wants to interface 
with system B (and neither are communication systems), then they must both interface to a common 
communications system.  Examples of this might be a type of radio or digital communication channel, or 
some sort of transshipment point for a transportation SoS.  For example, an air freighter cannot transfer 
cargo directly to a ship or vice versa.  They must transfer cargo to some other type of system that moves 
between them, because they cannot be physically in contact between the taxiway and harbor.  
However, a properly equipped seaport might be able to transfer containers directly from shipboard to a 
train via a crane that can reach both.  In our example domains introduced in section 4, two aircraft, or 
an aircraft and an exploitation center can transfer data via a radio communications link.  The systems 
both would have to be modified to carry, and to use, the common communications link.  It is also useful 
to penalize the performance for using infeasible interfaces.  In the GA approach to a solution, the 
algorithm must be able to return a fitness value for any random chromosome selected from the meta-
architecture.  The penalty helps select chromosomes with useful interfaces.  In a real case, one could 
make arguments for an appropriate value to be used for the bump, the reward, and the penalty.  
Experiments with the GA, using the fuzzy fitness function, were able to determine sets of factors that 

feasible and used

1 1 1 … 0 1 … 1 1
1 0 … 1 1 … 1 2

0 … 1 0 … 1 3 not feasible, no system 3
… … … … …

feasible 1 0 … 1 i
but not used 1 … 0 j not feasible - no  j comm i/f

… …
1 m

m  = a Comm system
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allowed selection of relatively ‘good’ chromosomes to be handed over to the ABM through the GA for 
the negotiation process.. 

The “feasibility” test for interfaces is described as follows:  if two systems think they have an interface 
by virtue of having a one in the ijth interface position, it is an infeasible interface unless they also have a 
common interface through at least one of the communications system links.  Heuristically, the bump is 
set to approximately double or triple the performance or affordability, based on the largest possible 
number of interfaces, if they were all feasible.  The feasibility test itself is only slightly correlated with 
the other attributes.  The size of the positive and negative bump is a parameter that can be adjusted for 
the domain and number of interfaces possible in the SoS.  Heuristically, the bumps are small, about a 
few tenths of a percent for each interface.  They couple to the performance and affordability through 
the interfaces as follows: 

𝑃𝑒𝑟𝑓𝑆𝑜𝑆 = (𝑃𝑒𝑟𝑓∑𝑠𝑦𝑠𝑡𝑒𝑚𝑠)(1 + 𝑏𝑢𝑚𝑝)(∑𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒−∑𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒)𝑃𝑒𝑟𝑓𝑓𝑖𝑛𝑎𝑙
= 𝑃𝑒𝑟𝑓(1 + 𝑏𝑢𝑚𝑝)∑𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒−∑𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

 

𝐴𝑓𝑓𝑜𝑟𝑑𝑆𝑜𝑆 = (𝐴𝑓𝑓𝑜𝑟𝑑∑𝑠𝑦𝑠𝑡𝑒𝑚𝑠)(1 − 𝑏𝑢𝑚𝑝)(∑𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒−∑𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒)𝐴𝑓𝑓𝑜𝑟𝑑𝑓𝑖𝑛𝑎𝑙
= 𝐴𝑓𝑓𝑜𝑟𝑑(1 − 𝑏𝑢𝑚𝑝)∑𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒−∑𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

 

The bump value provides an opportunity to do sensitivity analysis on the value of interoperability.  One 
could also have different size effects on performance and affordability, or any of the attributes.  In this 
project, on the intention was to demonstrate that the concepts could be made to work together, not to 
explore the full range of possible applications. 

Overlaying the feasibility factor arising from the requirement to use the communication systems to 
achieve an interface required the use of color.  The upper triangular form of displaying an example ISR 
chromosome with a colored block for each “one” of the string, and a brown block for each “zero” that 
would have been infeasible with our definition, is shown in The red blocks are “ones” that are not 
feasible, the yellow blocks are “ones” that are feasible, and the light blue blocks are “zeros” that are 
feasible – in other words, a feasible interface through a communication system is possible, but the 
chromosome shows it is not used.  The total used/feasible systems and interfaces is 29, the total 
used/infeasible (invoking a performance and affordability penalty) is 94, the total number of unused but 
feasible interfaces is 17. The dark blue background color is unused – not in the upper triangular matrix. 
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Figure 8.  A chromosome (upper triangular form) with feasibility displayed and system types labeled 

The capabilities of the SoS are primarily brought by the systems.  The interfaces do not contribute any 
specific capabilities by themselves, but enhance the systems’ capabilities.  To make the GA work 
properly, one should not have extra, unique checks of certain parameters within the chromosome 
depending on the domain, but do all selection using only the total ‘fitness’ of the chromosome.  
Therefore, using the feasibility concept, there is a penalty added for using an infeasible interface.  The 
sizes of the reward and the penalty are adjustable.  Example values were found to show it could work as 
advertised.  In a real problem, one would expect to discover these values inherent in the problem 
definition.  The penalty and reward factors multiply the sums that make up the Performance and the 
Affordability. 

The Flexibility attribute describes the number of choices available to the SoS manager.  If a proposed SoS 
chromosome is limited to one system as the only source of a capability, then the SoS manager is 
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severely limited in flexibility during development.  She must have that capability, so her ability to 
negotiate is reduced.  On the other hand, if the each capability is available from more than one source, 
the SoS manager has flexibility during development of the SoS.  For example, in the ISR domain example 
discussed later, we have an EO/IR search capability provided by several systems:  Fighters, remote 
piloted aircraft (RPAs), U-2, or DSP can all provide EO/IR.  Another Capability is side looking radar.  This is 
also available from fighters (different ones than EO/IR equipped ones) and JSTARS.  If a chromosome 
does not have at least two system sources of each capability, then Flexibility is reduced.  The evaluation 
of Flexibility consists simply of counting the capabilities that have less than two sources. High flexibility 
for systems manager, hence for the meta-architecture is associated with having multiple systems able to 
provide at least some of every capability; high number of capabilities provided by only one system 
equates with low flexibility – in other words, the SoS manager has little flexibility in choosing among 
systems if she needs these capabilities and there is only one system to get them from. 

The interesting thing about this Acknowledged SoS meta-architecture is that any system may decline to 
participate (or be operationally reassigned), and any interface can be there or not, depending on 
cooperation from the other system, the offer and negotiation with the SoS manager, and the 
environment.  Even systems that fully cooperate in building the SoS capability may be called to higher 
priority task, or nullified by enemy action when it comes time to use the capability.  Therefore, the SoS 
capability assessment on any particular day needs to be able to evaluate any combination of ones and 
zeroes.  This point suggests one of the attributes:  Robustness.  We define the robustness as being 
greater if a smaller loss in performance results for the loss of any single cooperating system and its 
interfaces from the SoS architecture instance.  

Summary of the Required Inputs to Create A Domain Specific Model  

• The set of existing, potential systems 
• The set of capabilities that could be contributed by each system  through small changes, such as 

adding a new interface 
• A short list of rules for combining the systems, interfaces, and their capabilities 
• A short list of what feasible changes (typically adding an interface) could (or could not) be made 
• The method by which each contribution from the systems and interfaces is measured against the 

desired capabilities (Key Performance Attributes – KPA) 
• Estimated performance, funding  and deadlines for each System in the SoS  

Rules for Combining Attributes to an Overall SoS Fuzzy Assessment: 

One of the modular approaches for suggesting an initial SoS architecture to the ABM negotiation  is by 
combining  the individual attribute evaluations is within a fuzzy inference system through a small 
number of rules we made for combining attribute values to an overall SoS assessment.  Combining the 
various attribute measures to form the overall SoS assessment is relatively straightforward.  For 
example, if half the attributes are slightly below average (one-step below Acceptable) and half the 
attributes are exceed requirements (one-step above Acceptable), then the SoS should average out to 
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Acceptable, with some better areas balancing out the poorer areas.  This is assuming the attributes are 
equally weighted.  Most of the rules are required only if there is an exception to the general rule just 
described.  In the ISR example, better performance and affordability together outweighed poor 
flexibility and/or robustness.  If all the attributes were above average, then that makes for an 
exceedingly good SoS, because this so rarely happens.  Of course, if all the attributes are exceedingly 
good, then we let the general rule stand, and the SoS is exceedingly good.  If one attribute is very good, 
but the rest are marginal, the good one can’t pull the SoS up above marginal.  Finally, if any of the 
attributes are unacceptable (the bottom rung of evaluation), then that drags the SoS evaluation down to 
unacceptable, too, regardless of how good the remainder of the attributes are.  These rules are 
summarized in Table 2. 

Table 2.  Simple Fuzzy SoS Evaluation Rules 

Plain Language Rule Fuzzy Rule Definitions from  
MATLAB Fuzzy Toolbox 

If    ANY   attribute is 
Unaccptable, then SoS is 
Unacceptable   

• If (Performance is Unacceptable) or (Affordability is 
Unacceptable) or (Developmental_Flexibility is Unacceptable) 
or (Robustness is Unacceptable) then (SoS_Arch_Fitness is 
Unacceptable) 

If     ALL    the attributes are 
Marginal, then the SoS is 
Unacceptable 

• If (Performance is Marginal) and (Affordability is Marginal) and 
(Developmental_Flexibility is Marginal) and (Robustness is 
Marginal) then (SoS_Arch_Fitness is Unacceptable) 

If     ALL    the attributes are 
Acceptable, then the SoS is 
Exceeds 

• If (Performance is Acceptable) and (Affordability is Acceptable) 
and (Developmental_Flexibility is Acceptable) and (Robustness 
is Acceptable) then (SoS_Arch_Fitness is Exceeds) 

If    (Performance AND 
Affordability )   are Exceeds, but 
(Dev.  Flexibility and Robustness) 
are Marginal, then the SoS is 
Acceptable 

• If (Performance is Exceeds) and (Affordability is Exceeds) and 
(Developmental_Flexibility is Marginal) and (Robustness is 
Marginal) then (SoS_Arch_Fitness is Acceptable) 

If   ALL   attributes EXCEPT ONE 
are Marginal, then the SoS is still 
Marginal 

• If (Performance is Marginal) and (Affordability is Marginal) and 
(Developmental_Flexibility is Marginal) and (Robustness is 
Acceptable) then (SoS_Arch_Fitness is Marginal) 

• If (Performance is Marginal) and (Affordability is Marginal) and 
(Developmental_Flexibility is Acceptable) and (Robustness is 
Marginal) then (SoS_Arch_Fitness is Marginal) 

• If (Performance is Marginal) and (Affordability is Acceptable) 
and (Developmental_Flexibility is Marginal) and (Robustness is 
Marginal) then (SoS_Arch_Fitness is Marginal) 

• If (Performance is Acceptable) and (Affordability is Marginal) 
and (Developmental_Flexibility is Marginal) and (Robustness is 
Marginal) then (SoS_Arch_Fitness is Marginal) 
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This simple set of rules demonstrated the fuzzy inference system’s capability to treat the assessment 
non-linearly.  The resulting 3D representation of the SoS fitness surface for two variables at a time is 
shown.  

  

 

Figure 9.  Non-linear fuzzy attribute to SoS evaluation mappings 

3.3 SoS Negotiation Model 

3.3.1 Game Theory Based Negotiation Model: Incentive Contracting 
Game theory approach is applied to various economic problems including incentive-contracting 
problems in multi-agent settings [51].  In this setting, SoS manager is subcontracting its tasks to 
individual system agents.  The problem for the SoS manager is to provide a contract and convince the 
individual systems (contractors) to join the SoS architecture and motivate them to do their tasks well.  
On the other side, for the individual system the success in carrying out the tasks depends on the time 
and work intensity with which it will put into fulfilling the task.  This work intensity is referred to as 
effort level.   

Since individual systems have their own motivations and objectives they want to do as little as possible 
and gain the highest rewards.  The SoS manager’s objective is different than the individual systems as 
the SoS manager wants to give lower rewards and obtain larger outcomes.  This problem can be 
formulated as a multi-constraint problem where SoS manager tries to choose the reward for the 
individual system, so as to maximize its expected utility subject to two constraints [51]:  

  Maximize 𝑟1, … . , 𝑟𝑛 ∑ ℘(𝑒̂𝑛
𝑖=1 , 𝑞𝑖)𝑈𝑆𝑜𝑆(𝑞𝑖, 𝑟𝑖) 

With the constraints: 

1. (Individual rationality)- Reward for the individual system must be large enough to motivate the 
individual system to prefer the contract rather than reject it.  This means that expected utility of the 
individual system will be at least as much as its reservation price  ∑ ℘(𝑒̂𝑛

𝑖=1 , 𝑞𝑖)𝑈𝑖𝑠(𝑒̂, 𝑟𝑖) ≥ 𝑢�  
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2. (Participation constraint)- Provides the individual system with the motivation it needs to choose 
the effort level that the SoS manager prefers, given the contract it is offered.  

𝑒̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒∈𝐸𝑓𝑓𝑜𝑟𝑡�℘(𝑒, 𝑞𝑖)𝑈𝑖𝑠
𝑛

𝑖=1

(𝑒, 𝑟𝑖) 

The following Table 3 summarizes the variable notations.   

Table 3.  Variable Notations used in the Game Theory Based Negotiation model 

Notation Meaning Comments 
Effort Set of efforts of the individual system 𝑒1, 𝑒2 … , 𝑒𝑖 ∈  𝐸𝑓𝑓𝑜𝑟𝑡 
Outcome Set of possible monetary outcomes 𝑞1,𝑞2 … , 𝑞𝑖 ∈  𝑂𝑢𝑡𝑐𝑜𝑚𝑒 

𝑞(𝑒) ∈  𝑂𝑢𝑡𝑐𝑜𝑚𝑒 
Rewards Set of possible monetary rewards to the 

individual system 
𝑟1, 𝑟2 … , 𝑟𝑖 ∈  𝑅𝑒𝑤𝑎𝑟𝑑𝑠 
𝑟(𝑞) ∈ 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 

 

𝑈𝑖𝑠 Individual system’s utility function 𝑈𝑖𝑠: 𝐸𝑓𝑓𝑜𝑟𝑡 × 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 → ℝ 
𝑈𝑆𝑜𝑆 SoS Manager’s utility function 𝑈𝑆𝑜𝑆: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 × 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 → ℝ 
𝑢�  Individual system’s expected utility 

when it does not accept the contract 
Reservation price 

𝑒∗ ∈  𝐸𝑓𝑓𝑜𝑟𝑡 Efficient effort level for the SoS manager Given individual system constraints 
𝑞∗ ∈  𝑂𝑢𝑡𝑐𝑜𝑚𝑒 Efficient outcome for the SoS  manager Given individual system constraints 

℘ Probability function  (used for cases 
under uncertainty 

℘: 𝐸𝑓𝑓𝑜𝑟𝑡 × 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 → ℝ 

SoS manager’s utility function: 
SoS manager utility function is in the form of Neumann-Morgenstern utility function [153] where 
preference over probabilistic outcomes is determined by maximizing the expected utility.  This satisfies 
the rationality assumption in game theory based approaches.  In the model, SoS manager’s utility 
function,𝑈𝑆𝑜𝑆(𝑞𝑖, 𝑟𝑖), is a function of the outcomes (performance) and rewards (funding).   

Min-additive utility function is proposed in [154] which is a weighted combination of additive utility 
function and minimization over a set of single attribute utility functions.  The min-additive utility 
function is suitable for SoS engineering as the SoS manager is trying the maximize the performance 
while minimizing the funding and deadline.  The min-additive utility function is described briefly.  
Detailed information about the utility function can be found in [154].   

Let 𝑥 = {𝑥1,  𝑥2, … , 𝑥𝑛} be the set of attributes that are interest to the SoS manager.  Each attribute 
varies from the worst preferred value (𝑥𝑖𝑊𝑂𝑅𝑆𝑇) to the most preferred value (𝑥𝑖𝐵𝐸𝑆𝑇).  Utility function 
expresses SoS manager’s strength of preference for various levels of x.  

Additive utility functions are suitable for outcomes that the SoS manager prefers, i.e. performance 
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𝐴𝐷𝐷(𝑢(𝑥)) = �𝑤𝑖𝑢𝑖(𝑥𝑖)
𝑖=𝑛

𝑖=1

 

Where 𝑤𝑖 non-negative weights that sum to 1 and 𝑢𝑖(𝑥𝑖) is a single attribute utility function such that 
𝑥𝑖𝑊𝑂𝑅𝑆𝑇 = 0 and 𝑥𝑖𝐵𝐸𝑆𝑇 = 1 

Minimization utility functions are suitable for unacceptable outcomes for the SoS manager, i.e. deadline 
and cost.  

𝑀𝐼𝑁(𝑢(𝑥)) = 𝑚𝑖𝑛{𝑢1(𝑥1),𝑢2(𝑥2), … ,𝑢𝑛(𝑥𝑛)} 

The min-additive utility function combines additive and minimization utility functions to benefit the 
advantages and offset the disadvantages of both functions.   

𝑀𝐴(𝑢(𝑥)) = 𝑤𝑀𝐼𝑁(𝑢(𝑥)).𝑀𝐼𝑁(𝑢(𝑥)) +𝑤𝐴𝐷𝐷(𝑢(𝑥)).𝐴𝐷𝐷(𝑢(𝑥)) 

𝑤𝑀𝐼𝑁(𝑢(𝑥)) = 1 −𝑀𝐼𝑁(𝑢(𝑥)) 

𝑤𝐴𝐷𝐷(𝑢(𝑥)) = 𝑀𝐼𝑁(𝑢(𝑥)) 

𝑀𝐴(𝑢(𝑥)) = (1 −𝑀𝐼𝑁(𝑢(𝑥)).𝑀𝐼𝑁(𝑢(𝑥)) +𝑀𝐼𝑁(𝑢(𝑥).𝐴𝐷𝐷(𝑢(𝑥)) 

where 𝑀𝐴(𝑢(𝑥)) represents the SoS manager’s utility function, 𝑈𝑆𝑜𝑆(𝑞𝑖, 𝑟𝑖).  

Levels of outcome, effort and rewards:  
Different levels of effort result in different levels of outcome.  The SoS manager evaluates outcome as a 
function of performance.  Thus we can define different levels of outcome (performance) as 
𝑞1,𝑞2 … , 𝑞3 ∈  𝑂𝑢𝑡𝑐𝑜𝑚𝑒 where𝑞1 < 𝑞2 < 𝑞3.  For example, 𝑞1is a marginal outcome for the SoS 
manager, 𝑞2 is an acceptable outcome, and 𝑞3 is an exceeding outcome for the SoS manager.   

Since outcome is a function of the effort level of the individual system.  We can define different levels of 
effort for the individual systems where  𝑒1, 𝑒2 … , 𝑒3 ∈  𝐸𝑓𝑓𝑜𝑟𝑡 where𝑒1 < 𝑒2 <  𝑒3.  In a similar way 𝑒1is 
marginal effort, 𝑒2is acceptable effort, and 𝑒3 is exceeding effort level.   

Rewards are also a function of the outcome.  Higher rewards are given for desired outcomes.  Thus we 
can define different levels of reward for the individual systems such that 𝑟1, 𝑟2 … , 𝑟3 ∈  𝑅𝑒𝑤𝑎𝑟𝑑𝑠 where 
𝑟1 < 𝑟2 < 𝑟3 

In our case, effort level depends on the deadline and funding changes in the individual system.  A 
change in the effort (Δd, Δf) will impact the outcome (performance) which will change the level of 
reward for the individual systems.   

Determining different levels of performance and effort is domain dependent.  Besides the SoS manager 
should take into account how change in performance, funding and deadline impacts the overall SoS 
architecture quality.  In the ISR SoS domain, Fuzzy assessment is used to evaluate the overall SoS 
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architecture quality.  Performance, affordability, robustness and flexibility are the four attributes to 
evaluate SoS architecture quality.  This tool is used to determine values for various levels of 
performance and funding changes.  The performance and affordability values in the Fuzzy assessment 
are changed incrementally to observe the deviation in the overall SoS performance and affordability.  
For example 3 levels of effort are determined using the Fuzzy assessor:    

Exceeds performance and effort (𝑞3, 𝑒3) :  Δp=0, Δf=0 

Acceptable performance and effort (𝑞2,𝑒2): Δp=20%decrease, Δf=60% increase 

Marginal performance and effort: Δp (𝑞1, 𝑒1) =50%decrease, Δf=100% increase 

For deadline change, the number of interfaces for the individual system is calculated.  The deadline 
should not exceed the total time allocated for all interfaces. 

Individual system’s utility function: 
The SoS manager has limited information on individual system utility function.  However, from a 
contracting perspective individual systems will try to maximize the reward (funding) with minimal effort 
level.  A simple utility function that captures this relationship can be expressed as 

𝑈𝑐(𝑟, 𝑒) = 𝑟 − 𝑒 

 

Individual system’s reservation price:  
The SoS manager has limited information on each individual system’s reservation price which is the 
minimum reward that will make the individual system accept the contract.  Otherwise, individual system 
can direct its resources to achieving its own objectives.  The reservation price for individual systems is 
expressed as  

  
𝑢� = (𝑓𝑜𝑓𝑓𝑒𝑟 − 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙) ∗ 𝑤 

where w is the weight allocated to each capability, 𝑓𝑜𝑓𝑓𝑒𝑟  is the funding counter offer received from the 
individual system and  𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the funding initially offered by the SoS manager.  If the system is 
contributing to a critical capability for the SoS system, the SoS manager will allocate a higher reservation 
price for that individual system.   

Negotiation protocol  
The SoS manager initially sends a connectivity request to individual systems based on the selected SoS 
architecture.  The connectivity requests include performance expectations for each capability, funding 
and deadline.  Individual systems either accept or send a counter-offer to the SoS manager which may 
include changes in performance, funding or deadline.  The SoS manager starts negotiation with the 
individual systems to find the optimal strategy for the SoS manager.    
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Finding the optimal strategy for the SoS manager: 
Determining the optimal strategy for the SoS manager depends whether the SoS manager has full 
information on the acquisition environment or not.  Two cases are considered to determine the optimal 
strategy for the SoS manager:  

- Contracts under certainty: In this case, it is assumed that SoS manager can observe individual 
system’s actions and there is no uncertainty about the individual system’s actions.  Thus the 
outcome is a function of the individual system’s effort.  In that case, SoS manager can use a 
forcing contract where the SoS manager pays the individual system only if it provides the 
outcome required by the SoS manager.  In such situations, the contract should at least provide 
the individual system a reward where its utility will equal its reservation price.  Thus the optimal 
reward will be determined based on the reservation price.   

𝑈𝑖𝑠�𝑒∗, 𝑟(𝑞∗)� = 𝑢�  

 
- Contracts under uncertainty: In this case, there is uncertainty about the possible outcomes of 

individual systems.  Neither the SoS manager, nor the individual systems knows the certain state 
of the world when agreeing on the contract.  Assuming that the SoS manager and individual 
systems are risk neutral, the maximization for the SoS utility function can be solved using a 
linear programming technique.  The optimal reward for the individual systems will depend on 
the reservation price.   

𝑟𝑖 = 𝑞𝑖 − 𝐶 

 where C depends on the individual system rationality constraint. 

3.4 Multi-Level optimization Model 

3.4.1 Problem Formulation 
In this section, we formulate the Stackelberg game between the SoS architect and the individual 
systems.  The Acknowledged SoS manger referred here as architect  is the leader of the Stackelberg 
game and decides on which capabilities should be provided by which systems and the funds allocated to 
the individual systems.  It is assumed that the systems will provide the capabilities requested by the SoS 
architect.  The systems are the followers and each individual system announces the deadline and 
performance level of the capabilities requested from it based on the funds allocated by the SoS 
architect.  Each system is an individual decision maker and has no information about the SoS and other 
systems.  In what follows, we first formulate the SoS architect’s problem of building the SoS 
architecture.  Then, the problem of an individual system is formulated considering the system’s 
collaboration degree. 
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3.4.2 SoS Architect’s Problem 
Consider a System of Systems (SoS) that requires a set of capabilities.  Let capabilities be indexed by i 
such that i∈I, I= {1, 2,…,n}.  The SoS architect can select among a set of systems to provide the 
capabilities.  Let systems be indexed by j such that j∈J, J= {1, 2,…,m}.  Particularly, SoS architect can 
allocate multiple capabilities to a single system.  A system, nevertheless, is not necessarily able to 
provide each capability.  Let  

 a
ij
= 



 
1    if capability i can be provided by system j; 
0     otherwise;  

and A be the n×m-matrix of aij values.  One set of decision variables of the SoS architect is then to select 

which systems will be asked to provide which capabilities.  Let  

 x
ij
= 



 
1    if capability i is requested from system j; 
0     otherwise;  

and X be the n×m-matrix of xij values.  Note that by definition of aij, we have xij≤aij.  That is, the SoS 

architect will not request a capability from a system which cannot provide that capability.  A system is 
selected in the SoS architecture if it is selected to provide at least one capability.  Let  

 S
j
= 



 
1    if  ∑

i∈I
 x

ij
e1; 

0     otherwise; 
 

that is, Sj is the binary (auxiliary decision) variable indicating selection of system j and let S be the m-

vector of Sj values. 

To function, the SoS should be fully connected.  That is, each capability should have communication with 
every other capability.  It is assumed that the capabilities provided by the same system are already 
connected.  This suggests that the SoS architect should select an interface between any pair of selected 

systems.  Note that 
n(n−1)

2  interfaces can be selected at most.  In particular, let  

 y
j1j2

= 



 
1    if an interface is selected between systems j1 and j2; j1;j2∈J; 

0     otherwise; 
 

and Y be the m×m-matrix of yj1j2
, j1,j2∈J, values.  Then, yj1j2

=1 if Sj1
+Sj1

=2 and Ij1j2
=0 if Sj1

+Sj1
≤1.  The 

following two points should be remarked: (i) yjj=0 ∀j∈J as a system, by definition, can communicate with 

itself so no interface should be selected to enable communication of a system with itself, (ii) yj1j2
+yj2j1

≤1 

∀j1,j2∈J, that is, in the case systems j1 and j2 are selected it does not matter whether the SoS architect 

selects an interface between systems j1 and j2 or systems j2 and j1.  These remarks, without loss of 

generality, can simply be handled by letting yj1j2
=0 if j1≤j2. 
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In the process of SoS architecting, i.e., determining X, and thereby S and Y, the SoS architecture regards 
three objectives: minimization of the total cost of the SoS architecture, minimization of the deadline to 
complete the SoS architecture, and maximization of the total performance of the SoS architecture.  Each 
interface has a fixed cost and let hj1j2

 be the cost of selecting the interface between systems j1 and j2, 

j1,j2∈J.  Furthermore, we assume that each system requires a fixed cost for providing a specific 

capability.  Let cij be the cost of requesting capability i from system j.  Similarly, we assume that each 

system has different deadlines in providing capabilities and each system can provide different capability 
performance levels.  The SoS architect, nevertheless, can allocate funds to the systems in order to 
improve the deadlines and performance levels of the capabilities requested from the systems.  Let Fj 

denote the amount of funds allocated to system j and F be the m-vector of Fj values.  Note that Fj=0 if 

Sj=0, i.e., no funds are given to a system that is not in the SoS architecture.  The total cost of the SoS 

architecture then reads as  

 TC(X,S,Y,F)= ∑
i∈I

  ∑
j∈J

 c
ij
x

ij
+ ∑

j1∈J
  ∑

j2∈J
 h

j1j2
y

j1j2
+ ∑

j∈J
 F

j
.  (1) 

The first term of Equation (1) is the total cost of requesting capabilities from systems, the second term is 
the total cost of the interfaces selected, and the last term is the funds allocated to the systems. 

The individual systems use the allocated funds to improve the deadlines and the performance levels of 
the capabilities requested from them.  Later in this section, we will discuss how an individual system 
uses the allocated funds to improve the deadlines and the performance levels of the capabilities 
requested from it.  Prior to that, our initial focus is on formulating the SoS architecture’s problem.  Let 

dij(x
j,Fj) and pij(x

j,Fj) denote the deadline and the performance level of system j in providing capability i 

when Fj amount of funds allocated to improve the performance measures of the requested capabilities, 

denoted by xj, where xj is the jth column vector of X.  The deadline of the SoS architecture is defined as 
the maximum time required by a system in providing the capabilities requested from it.  Particularly, 

 is the deadline of system j.  The deadline of the SoS architecture then reads as  maxi∈I{dij(x
j,Fj)xij}

 DL(X,S,Y,F)=max
j∈J

{max
i∈I

{d
ij
(xj,F

j
)x

ij
}}.  (2) 

The total performance of the SoS architecture is defined as follows  

 TP(X,S,Y,F)= ∑
i∈I

  ∑
j∈J

 p
ij
(xj,F

j
)x

ij
.  (3) 

The SoS architect’s goal is to create a SoS that provides each capability by at least one system while 
minimizing costs (Equation (1)) and deadline (Equation (2)) and maximizing the performance (Equation.  
(3)). The SoS architect’s optimization problem then can be formulated as follows:  
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(SoS-A) : min TC(X,S,Y,F)= ∑
i∈I

  ∑
j∈J

 cijxij+ ∑
j1∈J

  ∑
j2∈J

 hj1j2
yj1j2

+ ∑
j∈J

 Fj   

 min DL(X,S,Y,F)=maxj∈J{maxi∈I{dij(x
j,Fj)xij}}   

 max TP(X,S,Y,F)= ∑
i∈I

  ∑
j∈J

 pij(x
j,Fj)xij   

 s.t. ∑
j∈J

 aijxij≥1 ∀i∈I (4) 

  Sj≤ ∑
i∈I

 xij ∀j∈J (5) 

  
Sj≥ 

1
n ∑

i∈I
 xij ∀j∈J 

(6) 

  yjk≥Sj+Sk−1 ∀j∈J,∀k∈J (7) 

  xij∈{0,1}  ∀i∈I, ∀j∈J (8) 

  Sj∈{0,1}  ∀j∈J (9) 

  yjk∈{0,1}  ∀j∈J,∀k∈J (10) 

  Fj≥0 ∀j∈J (11) 

  

Equation (4) defines the constraints that each capability is requested from at least one system.  
Equations (5) and (6) guarantee that a system is selected in the SoS if at least one capability is requested 

from it and not selected otherwise.  Particularly, if ∑
i∈I

 xij=0, Equation (5) indicates that Sj=0 as 

Sj∈{0,1} ; and if ∑
i∈I

 xij≥0, 0< 
1
n ∑

i∈I
 xij≤1; hence, Equation (6) indicates that Sj=1 as Equation (7) enforces 

the SoS architect to select the interfaces between any selected pair of systems.  Note that if only one of 
the systems of any pair of the systems is selected, the interface between the systems in this pair will not 
be selected as there is a cost associated with it and interfaces do not contribute to the deadline and 
performance level of the SoS architecture.  Equations (8), (9), and (10) define the binary restrictions on 
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the decision variables (including auxiliary decision variables) and Equation (11) is the non-negativity 
constraints for the funds allocated to the systems. 

3.4.3 Systems’ Problems 
Given the allocated funds, Fj, and the capabilities requested from system j, xj, system j uses the allocated 

funds to improve performance measures of the requested capabilities.  A system can improve the 
deadline and performance level of a requested capability.  Particularly, system j can decrease the 
deadline of providing capability i by one time unit at a cost of dij.  Similarly, system j can improve the 

performance level of capability i by one unit at a cost of pij.  Let f
1
ij and f

2
ij denote the funds allocated by 

system j on decreasing the deadline and increasing the performance level of capability i, respectively.  

Note that ∑
i∈I

 xij(f
1
ij+f

2
ij)≤Fj.  Once the funds allocated to a system, they are not returned back to the SoS 

architect.  We assume that, without any additional funds, d
0
ij and p

0
ij are the deadline and performance 

level of capability i by system j.  That is, d
0
ij is the maximum deadline and p

0
ij is the minimum performance 

level announced by system j for providing capability i.  Then, with the use of funds Fj, system j can have 

the following deadline and performance level for providing capability i:  

 d
ij
(f

1
ij)=d

0
ij−d

ij
f
1
ij   (12) 

 p
ij
(f

2
ij)=p

0
ij+p

ij
f
2
ij   (13) 

It is assumed that there is a minimum deadline and maximum performance level achievable with funds 
in providing any capability by a system.  Particularly, we let Dij and Pij denote the minimum deadline and 

maximum performance level achievable with funds in providing capability i by system j.  That is, 

dij(f
1
ij)≥Dij and pij(f

2
ij)≤Pij.  It further indicates that f

1
ij≤ 

d
0
ij−Dij
dij

 and f
2
ij≤ 

Pij−p
0
ij

pij
. 

In this setting, the system can use the funds allocated by the SoS architect towards two options: (i) 
improving the performance measures of the capabilities requested and (ii) creating surplus from the 
funds to increase its profitability.  Option (i) would imply higher quality in providing capabilities; hence, 
it increases the chances of getting requests from the SoS architect.  Option (ii), on the other hand, would 
imply lower quality in providing capabilities; hence, it decreases the chances of getting requests from 
the SoS architect.  Therefore, there exists a trade-off between options (i) and (ii) for the system.  In the 
case the system fully operates in favor of the SoS architect, it will allocate all of the funds provided by 
the SoS architect for improving the performance measures for the capabilities.  In this case, we assume 
that the system’s objective is to maximize the minimum percent improvement of the performance 

 
Contract Number: H98230-08-D-0171                                                 WHS TO 029, RT 044: Enterprise and System of Systems Modeling  Part 3 

Report No.  SERC-2013-TR-021-3 
18 November 2013 

 54 



UNCLASSIFIED 

measures.  Specifically, percent improvement in deadline for providing capability i equals to 
d

0
ij−dij(f

1
ij)

d
0
ij

 

and percent improvement in the performance level for providing capability i equals to 
pij(f

2
ij)−p

0
ij

p
0
ij

.  It then 

follows that a fully collaborative system would maximize min 








 
dijf

1
ij

d
0
ij

, 
pijf

2
ij

p
0
ij

 if capability i is being 

provided. 

However, a system does not need to be fully in favor of the SoS architect.  A system would be more 

profitable if the percentage of the total funds used is lower.  That is, the lower 

Fj− ∑
i∈I

 xij(f
1
ij+f

2
ij)

Fj
 is, the 

more benefits system j earns.  To model an individual system’s willingness to collaborate with the SoS 
architect, we define wj as the collaboration degree of system j.  Given wj, system j’s objective function 

can be defined as follows:  

 SO
j
(f

1
j ,f

2
j )=w

j
 ∑
i∈I

 x
ij
 










min 








 
d

ij
f
1
ij

d
0
ij

, 
p

ij
f
2
ij

p
0
ij

+(1−w
j
) 






1− 

1
F

j
 ∑
i∈I

 x
ij
(f

1
ij+f

2
ij)   (14) 

where f
1
j  and f

2
j  are the n-vectors of f

1
ij and f

2
ij values, respectively.  The first term of Equation 14 is the 

total minimum improvements of performance measures valued by the system and the second term is 
the total budget utilization in improving the performance measures valued by the system.  In what 
follows, we present the mathematical formulation for system j’s problem:  

 

(Pj) : max 
SOj(f

1
j ,f

2
j )=wj ∑

i∈I
 Δij+(1−wj) 







1− 

1
Fj

 ∑
i∈I

 xij(f
1
ij+f

2
ij)  

 

 s.t. ∑
i∈I

 xij(f
1
ij+f

2
ij)≤Fj 

(15) 

  

Δij≤xij 
dijf

1
ij

d
0
ij

 ∀i∈I 

(16) 
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Δij≤xij 
pijf

2
ij

p
0
ij

 ∀i∈I 

(17) 

  

f
1
ij≤ 

d
0
ij−Dij
dij

 ∀i∈I 

(18) 

  

f
2
ij≤ 

Pij−p
0
ij

pij
 ∀i∈I 

(19) 

  f
1
ij≥0 ∀i∈I (20) 

  f
2
ij≥0 ∀i∈I (21) 

  

Equation (15) guarantees that system j will not allocate funds in improvements more than the funds 

allocated by the SoS architect.  Equations (16) and (17) define Δij=min 








 
dijf

1
ij

d
0
ij

, 
pijf

2
ij

p
0
ij

 for requested 

capability i.  .  .  Equations (18) and (19) state the upper bounds on the funds that can be allocated to 

improve a performance measure.  Equations (20) and (21) are the non-negativity of f
1
ij and f

2
ij, 

respectively.   

3.4.4 Stackelberg Formulation 
It is well known that Stackelberg games can be formulated as bi-level optimization problems.  In what 
follows, we therefore present the bi-level model of the Stackelberg game between the SoS architect and 

the systems.  Particularly, let f
1*
j (xj,Fj) and f

2*
j (xj,Fj) be the solution of Pj given xj and Fj.  Then,  

 d
ij
(xj,F

j
)=d

0
ij−d

ij
f
1*
ij (xj,F

j
),       (22) 

 p
ij
(xj,F

j
)=p

0
ij+p

ij
f
2*
ij (xj,F

j
).      (23) 

In the bi-level model, the upper level is the SoS architect’s problem, i.e., SoS-A.  There are m lower level 

problems, consisting of the systems’ problems, i.e., Pj ∀j∈J.  The following bi-level model represents the 
SoS architecturing with individual system contracts (SoS-ISC):  
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(SoS-ISC) : min TC(X,S,Y,F)  

 min DL(X,S,Y,F)  

 max TP(X,S,Y,F)  

 s.t. Equations (4)-(11) 

  Equations (22)-(23) 

  (f
1*
j (xj,Fj),f

2*
j (xj,Fj))=argmax{SOj(f

1
j ,f

2
j ) s.t. Equations (15)−(21)}  ∀j∈J. 

  

SoS-ISC is a multi-objective multi-level optimization problem.  In the next section, we discuss a genetic 
algorithms based meta heuristic to solve SoS-ISC. 

3.4.5 Solution Analysis 
Our focus is to determine a set of (X,S,Y,F), i.e., SoS architect with individual system contracts.  Recall 
that once X is known, S and Y can easily be determined.  Therefore, we propose a two-stage approach to 
solve SoS-ISC.  First, assuming that X is given, we determine F with a local search heuristic.  That is, given 
the requested capabilities from the systems, a heuristic method to build individual system contracts is 
constructed.  We refer to this stage as the system contracting.  This enables us to evaluate the given X.  
Then, a genetic algorithm is structured for determining a set of X solutions.  We refer to this stage as 
capability assignment.  An illustration of this meta-heuristic is given in Figure 10. 
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Figure 10.  Flow Chart of the Meta-Heuristic Approach 

 

3.4.6 System Contracting 
Here, we assume that X is given, that is, the SoS architect has decided on which capabilities are 
requested from which systems.  Then, the SoS architect aims to allocate funds to each individual system, 
from which at least one capability is requested.  We assume that the SoS architect will try to establish a 
contract with each such system in the SoS individually.  Therefore, we investigate a heuristic approach to 
determine Fj ∀j such that Sj=1 under the given X. 

Build a new generation of Xs using 
the parent set of Xs

Evaluate each X in the new 
generation

For a given X, determine F using a 
local search heuristic

Select Pareto set from the 
evaluated Xs 

Initialize a parent set of Xs

Stop?

Return the Pareto set of Xs

Yes

No
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Now, without loss of generality, suppose that capabilities 1, 2,…,k such that k≤n are requested from 
system j.  The SoS architect desires to get the most performance improvement with the funds allocated 
to system j.  Therefore, we assume that, in determining Fj the SoS architect aims to maximize the total 

improvement per money unit spent.  Recall that Δij is defined as the minimum improvement in 

capability i as a result of the system j’s decision on how to use funds, Fj, allocated to it.  This then 

suggests that the bigger the 
1
Fj

 ∑
i=1

k
 Δij the more benefits the SoS architect received. 

Furthermore, recall that 0≤f
1
ij≤ 

d
0
ij−Dij
dij

 and 0≤f
2
ij≤ 

Pij−p
0
ij

pij
.  That is, the money units that system j can spend 

on improvement of any performance measure of any requested capability has upper and lower bounds.  
At this point, in our heuristic approach, we assume that the SoS architect will determine Fj as follows: 

either λ
1
ij=0 or  or  will be allocated for improving the deadline of capability i≤k 

requested from system j; and, 0

λ
2
ij= 

d
0
ij−Dij
2dij

λ
3
ij= 

d
0
ij−Dij
dij

β
1
ij=  or β

2
ij= 

Pij−p
0
ij

2pij
 or β

3
ij= 

Pij−p
0
ij

pij
 will be allocated for improving the 

performance level of capability i≤k requested from system j.  Given the selected funds anticipated by the 
SoS architect to be allocated by system j in improving deadline and performance level of the capabilities, 

Fj will be sum of these funds.  Then, Pj can be solved to calculate the actual improvements with the total 

funds allocated to system j.  After that, the SoS can evaluate the 
1
Fj

 ∑
i=1

k
 Δij value. 

In selecting which level of funds, λ
1
ij or λ

2
ij or λ

3
ij and β

1
ij or β

2
ij or β

3
ij, we propose a local search heuristic.  

Particularly, let  

 »
ij
= 





 

1    »
1
ij is selected; 

2     »
2
ij is selected; 

3     »
3
ij is selected;  

 

and let λj be the k-vector of λij values.  Similarly, let  

 ²
ij
= 





 

1    ²
1
ij is selected; 

2     ²
2
ij is selected; 

3     ²
3
ij is selected;  
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and let βj be the k-vector of βij values.  Note that given λj and βj, Fj can be calculated easily.  The 

following local search heuristic determines the funds allocated to system j by the SoS architect.   

Algorithm 1 System Contracting with Local Search Heuristic for System j (SC-LHSj):   

Step 0: Without loss of generality, order the capabilities requested from system j such that capabilities 1,2,…,k are 

requested.  Initialize »ij=² ij=2 ∀i,i=1,2,…,k.  Let È=[»j,² j] and È*=È.   

 

Step 1: Find the best contract with fund cutting, ψ[−1]  

Step 1.1.  For ℓ=1:2k 

Step 1.2.  Set ψ
[−1]
ℓ =ψ and if 1ψ

[−1]
ℓ > , set ψ

[−1]
ℓ =ψ

[−1]
ℓ −1 

Step 1.3.  Solve Pj under with Fj=Fℓ= ∑
ℓ=1

2k
 ψ

[−1]
ℓ  

Step 1.4.  Calculate τℓ(ψ
[−1]
ℓ )= 

1
Fℓ ∑

i=1

k
 Δij  

Step 1.5.  End 

Step 1.6.  ψ[−1]=argmin{τℓ(ψ
[−1]
ℓ )}  

 

Step 2: Find the best contract with fund raising, ψ[+1]  

Step 2.1.  For ℓ=1:2k 

Step 2.2.  Set ψ
[+1]
ℓ =ψ and if 2ψ

[−1]
ℓ < , set ψ

+1]
ℓ =ψ

[+1]
ℓ +1 

Step 2.3.  Solve Pj under with Fj=Fℓ= ∑
ℓ=1

2k
 ψ

[+1]
ℓ  

Step 2.4.  Calculate τℓ(ψ
[+1]
ℓ )= 

1
Fℓ ∑

i=1

k
 Δij  

Step 2.5.  End 
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Step 2.6.  ψ[+1]=argmin{τℓ(ψ
[+1]
ℓ )}  

 

Step 3: Let  ψ  =argmin{τ(ψ[−1]),τ(ψ),τ(ψ[+1])} .  If  ψ  =ψ*, stop and return ψ*.  Else, let ψ=  ψ   

and go to Step 1.   

3.4.7 Capability Assignment 
In this section, we explain the details of the genetic algorithm (GA) proposed to solve SoS-ISC.  The GA 
consists of four main steps: chromosome representation, fitness evaluation, mutation, and termination.   

Chromosome Representation and Initialization: 
As introduced in Section 3.2.1, We adopt the binary matrix representation of X as the chromosome.  

Specifically, note that ∑
j=1

m
 aijxij=1 in a feasible X.  Therefore, for each capability i, we select a system j 

among the systems with aij=1 randomly and make xij value equal.  Repeating this process for each 

capability, a feasible X is generated.  There are two advantages of this chromosome representation: (i) 
feasibility of each chromosome is guaranteed and (ii) mutation operations, as will be explained, are 
really simple to generate new chromosomes.  We set the initial population size equal to N.   

Fitness Evaluation: 
Recall that SoS architect’s problem is a multi-objective optimization problem.  A common approach to 
solve multi-objective optimization problems is to generate a set of Pareto efficient solutions.  For the 

problem of interest, an SoS architecture with individual system contracts, i.e., say (X0,S0,Y0,F0) is Pareto 

efficient if there is not other (X,S,Y,F) that is better than (X0,S0,Y0,F0) in terms of all of the three 

objective functions defined in Equations (1), (2) and (3).  That is, (X0,S0,Y0,F0) is Pareto efficient if it is 
not dominated by any other solution (X,S,Y,F).  Therefore, given a set of chromosomes, instead of 
finding a best one, we focus on determining the Pareto efficient chromosomes in the current 

population.  Let PFpop denote the set of Pareto efficient solutions in the set of chromosomes of the 

current population, denoted by POP.  The following algorithm generates PFpop.   
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Algorithm 2 Determining Pareto efficient solutions of a given population: 

Step 0: Let TCl, DLl, and TPl denote the objective function values of lth chromosome, chroml: 

Step 1: For l=1:|POP| 

Step 2:  For k=l+1:|POP| 

Step 3:  If TCl<TCk, DLl<DLk, and TPl>TPk 

Step 4:  Set POP:=POP−{chromk} 

Step 5:  Else, if TCl>TCk, DLl>DLk, and TPl<TPk 

Step 6:  Set POP:=POP−{chroml} 

Step 7:  End 

Step 8: End 

Step 9: Return PFpop=POP. 

  

We use PFpop as the parent of the next population to be generated. 

Mutation: 

Due to the fact that one should have ∑
j=1

m
 aijxij=1 for each capability, a new chromosome can be 

generated by changing the system a specific capability is requested from.  Note that ∑
j=1

m
 aij is the number 

of systems that can provide capability i and the number of feasible X chromosomes is then equal to 

∏
i=1

n
  










 ∑
j=1

m
 aij .  With a single change in the provider system for each capability, at most 2n new X 

chromosomes can be generated from a given X chromosome.  We prefer to generate 2k new 
chromosomes from each parent chromosome such that k≤n.  To do so, k capabilities are randomly 
selected.  Without loss of generality, suppose that capabilities 1,2,…,k are selected.  Then, for each 
selected capability, we randomly select a system such that aij=1 and xij≠1.  This generates a new 

chromosome.  After that, the same process applied to the other selected capabilities.  Therefore, at the 

end of mutations, we generate at most 2k|PFpop−1|, where PFpop−1 is the set of parent chromosomes.  

Then |POP|=(2k+1)|PFpop−1|.  It is also important to note that the new generation consists of the newly 
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generated chromosomes plus the parent chromosomes.  That is, we do not omit the parent 
chromosomes from the new generation as they can still be Pareto efficient compared to the newly 
generated chromosomes.  In fitness evaluation step, this guarantees that the set of the parent 
chromosomes for the next generations are not worsening.   

Termination:  
As a termination criteria, we consider the parent chromosomes at the end of fitness evaluation of each 

generation.  Particularly, if PFpop=PFpop+1, it means that the later generation did not result in new Pareto 

efficient chromosomes.  If PFpop=PFpop+1 for ℓ consecutive generations, the algorithm stops.  The parent 
chromosomes at termination constitute the set of Pareto efficient solutions provided to the SoS 
architect. 

3.5 Negotiation Between SoS and System Providing Capability to SoS 
This section of the report describes the individual system negotiation models in detail. Each negotiation 
model is based on three major issues, which include performance, funding and deadline. The SoS agent 
provides each system with a subsection of the whole genetic string (or meta-architecture). The 
sectioned string is a matrix. SoS agent gives the required performance levels, funding provided and 
deadlines for each capability, the system can provide. For example System 1 can provide capabilities 1 
and 5, so the matrix will include 2 rows of information on the 3 issues for each capability. Besides, the 
matrix also includes the interfaces System 1 has to make with other systems, as required by the SoS 
manager. Therefore, in a way each individual system gets a piece of the full chromosome and in turn 
partial information.  The inputs from the SoS listed above are saved in an n by (m+4) matrix shown.  

 

 

Figure 11: Inputs from SoS to System 

The systems respond to the SoS offer in a similar format.  The system agents calculate the difference in 
values for each attribute calculated based on their utility and the SoS offer. These values are called the 
delta values are chosen as a response of the systems to SoS in the matrix format. 

At first, the individual system will receive the requirements from SoS.  The target of SoS is to obtain n 
capabilities by m systems and some connections between these systems.  The input information from 
SoS will include deadline, funding and performance demands for each capability, and those interface 
need to be construct by the ith system with others.  Then if SoS has m systems and needs n capabilities, 
the input is an n by m+4 matrix as illustrated in Table 4 below. 
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Table 4.  SoS output format 

 

  Interface between Sj and Si deadline funding performance 
 Sj Ij,1 Ij,2 …. Ij,m SoS.di SoS.fi SoS.pi 
C1 1 0 1 … 1 1 1 5 
C2 0 0 0 … 0 0 0 0 
… … … … … …    
Cn 1 1 0 … 0 3 2 2 
 

One complete epoch consists of an offer by the SoS agent to the system agents and a counter offer in 
reply from the systems to the initiator.  The algorithm below outlines the procedure of negotiation 
protocol. 

Simplified negotiation protocol algorithm   
epoch = 0 
while none of the agents have conceded  

SoS makes an offer to the System Agent 
System Agent replies with an offer to the SoS 
epoch = epoch + 1 

return offer 
 

Each individual system may possess more than one capability.  The SoS manager may request to procure 
these capabilities at different levels of performance and would provide different funding amount for 
each of them.  Another assumption is that system agents have fixed amount of resources and work 
equally well to develop all capabilities asked of them.  Now the resources have to be shared amongst 
the development of capabilities in a certain ratio of agent preference.  The agent ranks the priority of 
development of a capability based on information provided by the SoS and shares the resources 
accordingly to develop them.  In this model, both the SoS agent and individual system agents assume 
partial information. 

3.5.1 Selfish System Model 

Model Overview: 
A model of an individual system k is built, which is capable of providing both capabilities to a system of 
systems (SoS) and interfaces with other individual systems in the SoS.  The request for participation is 
sent from SoS to the individual system, including: 

• Requested capabilities, Ci 
• Requested interfaces between the system k and other individual system j on capability i, χij 
• Deadline of delivery, SoS.di 
• Funding for providing the requested capabilities, SoS.fi 
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• The performance requirement on each of requested capabilities, SoS.pi 

This model can be termed a “selfish” model in that the necessary condition for the individual system k to 
collaborate with the SoS is that the incremental profit from the participation is nonnegative.  Therefore, 
a resource allocation problem is formulated to model the decision behavior of the individual system.  
The optimization problem is solved with considerations of the capabilities, resources and efficiency of 
the system.  Moreover, the market condition is modeled so that the system agent has a rational 
assessment of the incremental profit provided by the SoS.  

The outputs sent from the system k to the SoS include: 

• Provided capabilities, Ci 
• Provided interfaces between the system k and other individual system j on capability i, χij 
• Delivery time deviation (additional time needed), SoS.∆di 
• Funding deviation (additional fund needed), SoS.∆fi 
• Performance deviation (under performance is any), SoS.∆pi 

The outputs listed above are saved in an n by (m+4) matrix shown. 

 

 

Figure 12: Outputs from System to SoS 

Model Description: 
Two linear programming (LP) models are built to provide two scenarios of negotiations with the SoS, 
which are solved using the optimization tool in Matlab.  In the first scenario, the SoS is informed possible 
performance deviation (if any) at the provided funding and time.  In the second scenario, the SoS may 
be provided the capabilities and interfaces as it desires, yet it may be asked to provide additional 
funding and/or time.Model setting 

The following is the setting of the individual system k. 

i: the index of capabilities, and i = 1, 2, …, n.   

I: The set of capability indices, and I = {1, 2, …, n}. 

j: the index of individual systems, and j = 1, 2, …, m. 

J: The set of system indices and J = {1, 2, …, m}. 

Ci: binary variable indicating whether the capability i is requested, ∀ i. 
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Ireq: the set of requested capability indices; Ireq ⊆ I. 

pi: performance requirement on capability i, ∀ i ∈ Ireq. 

di: deadline to deliver capability i, ∀ i ∈ Ireq. 

fi: funding provided to capability i, ∀ i ∈ Ireq. 

χji: binary variable indicating the requested interface between system j and k (k≠ j) in forming capability 
i, ∀ i and j.   

ni: the number of interfaces that system k is requested to provide on capability i, ∀ i ∈ Ireq. 

yi: the system k’s throughput of capability i in a unit of time, ∀ i ∈ I. 

Iy: the set of indices of capabilities that system k is able to build, Iy = {i| yi > 0}. 

Ireqf: the set of indices of capabilities that is requested by the SoS and the system k is able to build, and 
Ireqfsbl = Iy ∩ Ireq. 

Ireqifsbl: the set of indices of capabilities that is requested by the SoS but the system k is not able to build, 
and Ireqifsbl = Īy ∩ Ireq. 

Zavg: the system k’s average available resource per unit of time. 

Zrange: the range of the system k’s resource per unit of time. 

T: planning time horizon.  T = max{int∑i∈Ireq pi/(yi×Zmin), max i∈Ireq (di)+1}.  int∑i∈Ireq pi/(yi×Zmin) is the 
time needed (in integer) if the system k has only the minimum resource and build the requested 
capabilities in sequence.  [max i∈Ireq (di)] is the relaxed upper bound of deadlines.  The model assumes 
the planning time horizon is no shorter than these two. 

t: the index of time; t = 1, 2, …, T. 

Zt: the system k’s resource available at time t, and Zmin = Zavg-0.5Zrange ≤ Zt ≤ Zmax = Zavg+0.5Zrange ,∀ t. 

Zti: the resource allocated to build capability i at time t.  zit ≥ 0 ∀ i∈Ireqfsbl and ∀ t.  zit is are the decision 
variables. 

cci: the cost of consuming one unit of resource in providing capability i at time zero, ∀ i ∈ Iy. 

cIi: the cost of consuming one unit of resource in providing interfaces associated with capability i, as a 
percentage of cci. 

g: the inflation rate of unit cost over time. 
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c′ti: the cost of consuming one unit of resource in providing capability i and the associated interfaces at 
time t, for t = 0, 1,…,.di and i ∈ Iy.  cti = cci(1+cIini)exp(g(t-0)). 

pm: profit margin.   

cti: the market price of one unit of resource for providing capability i at time t.  cti = (1+pm)c′ti . 

c″ti (>0): virtual penalty on exceeding the deadlines, for di < t ≤ T and i∈Iy.   

cpti (= c′ti + (cti – c′ti)+ + c″ti): the cost of consuming one unit of resource for providing capability i and the 
associated interfaces at time t, after the adjustment for the opportunity cost, ∀ t. 

wi : the weight that system k put on capability i, ∀ i ∈ Ireqfsbl; and wi =[fi/di]/ (∑i∈Ireq fi/di). 

Linear Programming (LP) models for decision support: 
The first problem (P1) helps identify the best performance of system k on the requested capabilities and 
interfaces with the given funding and deadlines.  First, zti = 0 for i∉(Ireqfsbl); and ∀i∈Ireqfsbl, zti’s are 
determined by the following problem: 

     (3.6.1-1)  

The objective of (P1) is to minimize the weighted sum of under performances.  The first constraint 
means the performance on a requested capability does not exceed the required performance.  The 
second constraint means the resource consumed at time t should not exceed the resource available at 
then.  The third constraint means the total costs should not exceed the total funding provided.  The 
fourth constraint indicates that the resource relocated to building a requested capability and the 
associated interfaces is nonnegative.   

Denote by {zti
*| t = 1, 2, …, di, and i ∈ Ireqfsbl} an solution to (P1).  Let zti

*=0 at t = 1, 2, …, di and for i∉Ireqfsbl  
so that zit

* is defined at any i.  The minimized performance deviation is calculated by 
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.   (3.6.1-2) 

The minimized performance deviation is calculated based on the assumptions of no extension of 
deadlines and/or no additional funding: 

 
* 0id∆ = ,  (3.6.1-3) 

 
* 0if∆ = .   (3.6.1-4) 

 

The second problem (P2) helps determine the minimum additional funding and/or minimum additional 
time to meet the goal of forming all the capabilities and interfaces that system k is capable of providing.  
First, zti = 0 for I ∉ Ireqfsbl; and ∀ I ∈ Ireqfsbl, zti’s are determined by the following problem: 

 (P2) 
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  (3.6.1-5) 

The objective of (P2) is to minimize the total costs, including the additional fund used and the virtual 
penalty on additional time used.  The first constraint means the performance on a requested capability 
is equal to the required performance.  The second constraint means the resource consumed at time t 
should not exceed the resource available at then.  The third constraint indicates that the resource 
relocated to building a capability and the associated interfaces is nonnegative.   

In (P2), the funding constraint is relaxed and the deadline for finishing any capability i is “extended” to T.  
We choose T to be 

 min

max int , max ( )
reqfsbl
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i
i

i I
i I i
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T d

Z y ∈
∈
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,  (3.6.1-6) 
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min

int
reqfsbl

i

i I i

p

Z y∈

   
  

   
∑  is the time needed if building capabilities in a sequential manner and the system 

k  has just the minimum resource.  The SoS may provide a very long deadline that is not needed by the 
system k.  Considering this possibility, we choose such a value of T so that a feasible solution to (P2) is 
assured.   

{c″ti|t =di +1, …, T; i ∈ Ireqfsbl} is the virtual penalty on exceeding the deadlines.  For any capability i, the 
penalty satisfies 

 
,  (3.6.1-7) 

and  

 
,ti si ic c t s d′′ ′′> ∀ > >

.   (3.6.1-8) 

The virtual penalty like such indicates that the cost to build any capability i after the desired deadline, di, 
is extremely high and the marginal cost grows with the prolonged time.  Consequently, the objective 
function of (P2) discourages the use of the resource after the deadlines unless system k has to.  
Therefore, the objective function of (P2) effectively penalizes the usages of both the extra funding and 
time. 

Denote by {𝑧̂𝑡𝑖| t = 1, 2, …, T; i ∈ Ireqfsbl} an solution to (P2).  Let 𝑧̂𝑡𝑖=0 at any time t and for i∉ Ireqfsbl to 
make 𝑧̂𝑡𝑖 be defined at any i.  Since the system k guarantees the performance on the capabilities that it 
is able to provide, the minimum deviation of performance is either zero or –pi.  The minimum additional 
time needed is found to be 
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The total minimum additional funding is 

 

*

1 1

ˆ
i

reqfsbl

d n

ti ti i
i I t i

f c z f

+

∈ = =

 
∆ = −  

 
∑ ∑ ∑

,   (3.6.1-11) 

 
Contract Number: H98230-08-D-0171                                                 WHS TO 029, RT 044: Enterprise and System of Systems Modeling  Part 3 

Report No.  SERC-2013-TR-021-3 
18 November 2013 

 69 



UNCLASSIFIED 

which is further split as the additional funding needed for each requested capability: 

 
* *

i if fλ∆ = ∆   (3.6.1-12) 

Where λi is determined by  
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.   (3.6.1-13) 

Negotiation with the SoS: 
If the system k is not able to provide any capability requested by the SoS, that is, Ireqfsbl = ∅, the system k 
will tell the SoS that the performance deviation is zero, but the deviations of deadline and funding is 
extremely large: 

  

  (3.6.1-14) 

  

  (3.6.1-15) 

  

  (3.6.1-16) 

Otherwise, the solutions to (P1) and (P2) generate the foundation of two negotiation scenarios for the 
system k.  We assume these two scenarios occur with chances.  The system k may not share the 
complete information (e.g., the best performance, the capabilities not capable of providing, cost 
information) with the SoS during the negotiation for some reasons (e.g., business secret, for better 
negotiation outcomes).   

The first scenario of negotiation is derived from the solution to (P1).  The agent of system k provides the 
SoS the performance deviation defined as: 

 ,  (3.6.1-17) 

with the given funding and time: 

 ,  (3.6.1-18) 
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 .   (3.6.1-19) 

in Eqn.  (3.6.1-17) has been defined in (3.6.1-2).  In this scenario of negotiation, the system k has 

strong motivation to participate and, therefore, its shows the minimum deviation of performance to 
SoS, as it is indicated by Eqn.  (3.6.1-17).  Since the system k does not want to let the SoS know what 
capabilities it is not capable of providing, the system k does not update the Ci’s and χji’s.   

The second scenario of negotiation is derived from the solution to (P2).  The agent of system k provides 
the SoS the performance deviation defined as: 

 , (3.6.1-20) 

that is the system k fully meets the performance requirement on the capabilities that it is capable of 
providing.  The system agent adds a random nonnegative number above the minimum additional fund 
needed in order to not share the private information with the SoS.  If the additional fund needed is zero, 
the agent will still ask for an additional funding equal to a small portion of the provided funding.  On 
those capabilities that the system k is not capable of providing, the agent asks for a very large amount of 
additional funding equal to Mfi.  Therefore, 

 
.   (3.6.1-21) 

The agent adds a random nonnegative integer above the minimum time in order to not share the 
private information with the SoS.  If the system k is not capable of providing a capability, then the agent 
asks for a very long additional time,  

   (3.6.1-22)
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Again, since the system k does not want to let the SoS know what capabilities it is not capable of 
providing, the system k does not update the Ci’s and χji’s.   

Variation of the Individual System: 
Technically, we can produce a family of models by modifying the model parameters.  An excel file 
(setting_systemk.xlsx) is created as an input file for the matlab code of this model, which lists the model 
parameters that can be modified to create a family of models with different characteristics and 
behaviors.  In the following these parameters, and the way of selecting values for these parameters, are 
discussed in sequence. 

• y: throughput (units of capability produced per time unit per resource unit).  It is an nonnegative 
real value vector of n elements.  "y(i)=0" means the individual system k is not capable of 
providing capability i.  The greater the y(i), the more efficient the system k in building the 
capability i. 

• Resource per time unit (assuming a symmetric distribution of resource) 
o Z_avg: a positive real number.  The greater the Z_avg, the higher the average resource 

of the system k.   
o Z_range: X_range is a positive real number and no greater than 200% of Z_avg.  The 

greater the Z_avg, the more volatile the resource of system k. 
• Costs 

o c_c: the cost of consuming one unit of resource per time unit in producing capabilities.  
It is a nonnegative vector of n elements.  "c_c(i)= 0" if "y(i)=0".  The greater the c_c(i), 
the more expensive for the system k to provide capability i. 

o c_I: the cost of consuming one unit of resource per time unit in producing interfaces, as 
a percentage of c_c.  It is a vector of n elements.  "c_I(i) = 0" if "y(i)=0".  The greater the 
c_I(i), the more expensive for the system k to provide an interface with other systems 
on capability i. 

o growth_rate: the continuous growth rate per time unit.  It must be positive to ensure 
that the additional time needed is minimized. 

o pm: the required profit margin of capabilities.  pm describes the minimum required rate 
of return from providing capabilities.  It is a vector of n elements.  "pm(i)=0" if "y(i)=0".  
pm is nonnegative.  It is the primary parameter for modeling the utility function of the 
system k.   

• If: pm(i) = 0, the system k would like to collaborate with SoS in providing capability i without 
an attempt to make profit (but losing profit is not acceptable).   

• Otherwise: the system k would like to collaborate with SoS in providing capability i only if 
the minimum required rate of return is met (i.e.  making a minimum level of profit is 
required from the collaboration).  The greater the pm, the "greedier" the system k is. 

• CriticalPro: the probability of sending the P1 result to SoS, and (1-CriticalPro) is the probability of 
sending the P2 result to SoS.  CriticalPro is within the range of [0,1], including the two 
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boundaries.  Use CriticalPro to control the way of negotiation: (P1) or (P2).  There are two 
extreme scenarios: 

• If: CriticalPro = 0, the result of (P2) is sent to SoS; 
• If: CriticalPro = 1, the result of (P1) is sent to SoS; 
• Notes:  
• (P1) tells the best performance of the system k at the given deadlines and funding.   
• (P2) tells the additional funding needed and additional time needed in order to meet the 

performance requirements (if the system k is capable).   
• In (P2) the additional funding needed may be greater than the minimum additional funding 

needed; similarly, the additional time needed may be longer than the minimum additional 
time needed.  This is a strategy that the system k uses in the negotiation and protecting its 
private information.  Please refer to parameters AF1, AF2, and AT for the details. 

• Negotiation Parameters for (P2) 
o AF1: If the system k will use up all funding to be provided by SoS, it requests up to AF1 

more than the additional funding needed.  AF1 is a nonnegative real number.  The 
greater the AF1, the greater the profit, and the failure rate as well, from the negotiation with 
SoS. 

o AF2: if the system k will not use up all funding to be provided by SoS, it requests up to 
AF2 more than the funding provided by the SoS.  AF2 is a nonnegative real number.  The 
greater the AF2, the higher the failure rate and profit from the negotiation with SoS. 

o AT: the system k request up to AT units of time more than the minimum additional time 
needed.  AT is a nonnegative integer. 

• If: AT=0, only the minimum additional time needed is requested. 
• else: request up to AT units of time more than the additional time needed. 
• The greater the AT, the higher the failure rate and time flexibility from the negotiation with 

SoS. 

3.5.2 Cooperative System Negotiation Decision Model 
Figure 13 illustrates the bilateral negotiations for the cooperative decision model.  The protocol used of 
the cooperative negotiation model falls within the class of multi-issue negotiations, where the agents 
negotiate on all the issues together.  The strategy deployed here is to negotiate bilaterally between the 
participating system agent and the SoS agent.  This incorporates estimating functions and weighted 
counter proposals.  It is assumed the agents following cooperative negotiation protocol have an innate 
behavior of being helpful and supportive to the SoS formation.  However, at the same time there are 
certain constraints that need to be incorporated in their overall response to the SoS offer.  Thus, this 
protocol presents a semi-cooperative negotiation model, which models the tradeoff between the two 
behaviors for the agents.  A weighted sum approach is used to arrive at the final proposal value.  It is 
assumed that different systems will weigh the two behaviors differently.   
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Figure 13 Compromise between innate behavior and constrained behavior 

Since each system can be asked for providing one or more capabilities, represented as 𝐶𝑖 subscript 
𝑖 ∈ (1,2 …𝑁).  The attributes to be negotiated in this model are performance, funding and deadline, 
denoted by 𝐴𝑗,𝑤𝑖𝑡ℎ the subscript 𝑗 ∈ (1,2, . .𝑀), respectively. Maximum and minimum values for 
issues under negotiation are also defined as ( 𝑚𝑖𝑛𝑗 ,    𝑚𝑎𝑥𝑗) for issue j.  
𝐴𝑖𝑗 𝑖𝑠 𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑡𝑜 𝑎𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑗 𝑢𝑛𝑑𝑒𝑟 𝑛𝑒𝑔𝑜𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 

𝐴𝑖𝑗𝑝  𝑖𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 , 

𝐴𝑖𝑗𝑑   𝑖𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑓𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖, 

 𝐴𝑖𝑗𝑓  𝑖𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑓𝑢𝑛𝑑𝑖𝑛𝑔 𝑓𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖, where jp, jd,jf ϵ j. 

The number of systems is S denoted by t. 

𝐼𝑖𝑡𝑡’ 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡 𝑎𝑛𝑑 𝑡’ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑆𝑜𝑆 𝑓𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖,𝑤ℎ𝑒𝑟𝑒 𝑡, 𝑡’ ϵ (1, 
2..S) and t≠t’ 

 

Since the amount of resources is fixed for an individual system, it has to divide them in order of 
preference of capability production/ development. 
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It is assumed a system has ‘R’ units of resources to be divided among as 𝐶𝑖 capabilities. 

To get an order of preference, the following metric can be proposed: 

 metric 𝑀𝑖 = � 𝐴𝑖𝑗𝑝
𝐴𝑖𝑗𝑓

 � * ∑ 𝐼𝑖𝑡𝑡′𝑡′,𝑡≠𝑡′  

A ratio of metrics is taken to calculate the amount of resources to be distributed amongst the 
capabilities for development.  Metric 𝑀𝑖 can be explained as amount of performance required per unit 
of funding and the complexity of the task.   

𝐸𝑎𝑐ℎ 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑅𝑖 𝑎𝑚𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑅𝑖 = � 𝑀𝑖
𝛴𝑀𝑖

� ∗ 𝑅 and 𝛴𝑅𝑖 = 𝑅 

To calculate the resources needed for development of each capability, the above equation is proposed. 
This equation ensures that resources are distributed based on performance required for 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖, 
funding provided for 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 and the complexity of task. Since the system cannot increase the 
amount of resources during negotiation in the current epoch, it is defined that the sum of resources for 
all capabilities is equal to the total resources at all times. 

Complexity of the task or capability i is estimated by the variable Coi.  Coi is defined as the ratio of the 
number of interfaces require by a system for a capability I development to the total number of 
interfaces possible. 

The total number of interfaces is calculated as total systems participating subtracted by one. This 
reduces the estimation of the real complexity of task. 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑆 − 1 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑆𝑜𝑆 𝑓𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 =  � 𝐼𝑖𝑡𝑡′
𝑆

𝑡=1,𝑡≠𝑡′

 

𝐶𝑜𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
 

Number of interfaces in the current epoch is denoted by 𝐼𝑐 

Number of interfaces in the previous epoch is denoted by 𝐼𝑝 

Maximum number of interfaces possible is denoted by 𝐼𝑀𝑎𝑥 

Cooperative Estimation of Attributes for Negotiations: 
An innate cooperativeness factor (V) and constrained innate factor (N) also need to be defined.  The 
cooperativeness factor represents the level of cooperative behavior in a system.  The constrained factor 
defines an evaluation of the importance of the issue to the system in the current epoch of negotiation.  
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For each issue a priority function is defined based on the current epoch, complexity and the number of 
changes in interfaces required by the SoS manager from the previous epoch.  This becomes: 

𝑉 ∈ (0,1] ; V varies for each individual system depending on the cooperativeness.  A value of 𝑉 = 0 
denotes complete cooperation and 1 denotes least cooperation. 

The deadline estimated by the agent for capability i ,  through the cooperative factor is𝐴𝑖𝑗𝑣𝑑, where 

𝐴𝑖𝑗𝑣𝑑 = [( 𝑽
𝑹𝒊

) ∗ 𝐴𝑖𝑗𝑑] ( next higher integer value) 

The funding estimated by the agent for capability i , through the cooperative factor is 𝐴𝑖𝑗𝑣𝑓, where 

𝐴𝑖𝑗𝑣𝑓 = ( 𝑽
𝑹𝒊

) ∗ 𝐴𝑖𝑗𝑓 

The performance estimated by the agent for capability i, through the cooperative factor is 𝐴𝑖𝑗𝑣𝑝, where 

𝐴𝑖𝑗𝑣𝑝 = ( 𝑽
𝑹𝒊

) ∗ 𝐴𝑖𝑗𝑝 

These equations calculates the estimated deadline for 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 based on cooperativeness of the 
system, deadline offered by SoS and the amount of resources allocated for𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖. A higher 
cooperation, which means the value of V is close to 1, can be translated for each attribute by multiplying 
it with the given offer. Similarly, the resources allocated will affect the estimation of attributes and 
hence are placed in the denominator of the metric. A higher resource allocation will thus tend to give a 
lower estimation of the attribute by the individual system and vice versa.  

Constrained Estimation of Attributes for Negotiations: 
 

𝐴𝑖𝑗𝑙𝑑   represents the constrained function for negotiationg deadline 

𝐴𝑖𝑗𝑙𝑓 represents the constrained function for negotiationg funding 

𝐴𝑖𝑗𝑙𝑝 represents the constrained function for negotiationg performance 

𝐴𝑖𝑗𝑙𝑑 = next highest integer value of    [𝐴𝑖𝑗𝑑
𝒆
𝑰𝑪−𝑰𝑷
𝑰𝒎𝒂𝒙 ] 

The deadline is estimated here as a function of the amount of change required in interfacing with other 
system from the previous epoch. In this way the system can estimate how much more time it will need 
to fulfill the requirement of the desired capability. If the numbers of interfaces required are more in the 
current epoch, than the previous epoch the deadline increases.  To normalize the effect, the total 
number or maximum number of interfaces possible divides the change. The exponential rose to this 
quantity and  is then modeled as an exponent of the deadline required by the SoS. The value then 
calculated is rounded off to the next highest integer. The similarity of the interfaces in two consecutive 
epochs could be taken into account to measure the effort required by the system. The number of new 
interfaces required which are not similar to the one’s in the previous epoch can also be taken into 
account for further improvement of the metric. 
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𝐴𝑖𝑗𝑙𝑓 = 𝐴𝑖𝑗𝑓𝒆
𝜶(# 𝒐𝒇 𝒆𝒑𝒐𝒄𝒉𝒔−𝟏)

   where α =  0.1 

For estimating the funding, the time value of money is considered as a primary concern for the system. 
As the number of epochs increase or number of negotiations increase, more time is taken to decide to 
the participation. This adversely affects the systems funding requirements. Hence funding offered is 
raised to the power of number of epochs-1 times a positive quantity taken as “alpha”. The maximum 
value reached by the system in terms of funding can be the provided funding itself since if the number 
of epochs is 1, the exponential becomes 1 as well. 

𝐴𝑖𝑗𝑙𝑝 = Aijp ∗ (
𝟏

𝟏 − 𝐂𝐨𝐢
)𝟏 

The performance is estimated to decrease with increase in complexity. Hence, the metric proposed 
above is used to reflect that as the complexity increases, the performance goes lower than the required 
value. The maximum value reached can be the required performance itself. 

The idea is to combine the values from both perspectives to give the agents a realistic picture of their 
estimates.  Since this represents the cooperative model, it is assumed that cooperative behavior is more 
important than the constrained behavior.  Therefore, to combine the values of negation issues from 
both of these behaviors, it is proposed to use a weighted aggregation approach. 

This proposed aggregation uses a weights approach comprised of two inputs: the cooperative behavior 
value and the constrained behavior value.  Normalized weights are defined as non-negative real 
numbers,  

𝑤1,𝑤2, . . .  ,𝑤𝑚, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖 =  1. 

𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 =  𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 , 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒) 

Proposed deadline = WA(Aijld,𝐴𝑖𝑗𝑣𝑑 ) 

∆d = deadline by SoS− proposed Deadline 

 

Similarly, all other delta values are computed for funding and performance. 

Basic assumptions for the individual systems decision making: 
The individual systems will make decisions based on the following considerations: 

1. The establishment of each demanded capability is an independent task for the individual 
system. 

2. Individual system will concede based on the reply of SoS to the offer made.  If the SoS concedes 
first it, the system accepts the last offer it made, else the system concedes after a certain 
number of negotiation cycles or epochs on its offer. 
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3.5.3 Opportunistic - Markov Chain Model 
The model presented here for the system in question is an “opportunistic” model, i.e., that the system 
can behave selfishly as well as unselfishly (or selflessly).  In other words, by tweaking a certain tunable 
parameter, η, an entire spectrum of behavior – ranging from extremely selfless to extremely 
opportunistic (selfish)  – can be obtained from the system.  Hence, in a sense the system’s behavior can 
be characterized as “opportunistic” because there is no fixed pattern of behavior that this system will 
exhibit.  It needs to be understood that how the system behaves can be controlled by varying the 
tunable parameter (η), and thus it is possible to have a large number of systems, using differing values 
of η, ranging from very selfish to extremely selfless.  An example is provided at the end to illustrate the 
interaction process between the SoS and the system concerned.   

The system will interact with the SoS as follows.  When the SoS provides via a data structure the 
following information: an architecture, a desired performance level, the level of funding, and the 
deadline, the system will perform internal calculations to develop outputs for the following: 

• Willingness of the system to cooperate with the SoS 
• The performance level that the system can deliver 
• The funding it will need 
• The deadline by which it will be able to complete its task 

A project management model based on Markov chains is used for estimating the above-mentioned 
outputs.  The mathematical details of this model are now below.  The opportunistic behavior of the 
system will be dependent on an adjustable opportunistic parameter η.  The SoS will have the ability to 
change this parameter in order to develop a class of systems with differing behavior.  Further, the 
sluggishness of the system will be defined by additional parameters (l and m), which also the SoS will 
have the ability of adjusting.   

Methodology:   
Essentially, the work assigned by the SoS to the system will be assumed to be a ``project’’ that takes a 
random amount of time and a random amount of resources (funding) to complete.  The internal phases 
of this project is modeled as a Markov chain, and the Markov chain will be to estimate the expected 
(mean/average) amount of time and funds needed by the system.  The willingness to cooperate is based 
on how quickly the system will be able to complete the task (project) at hand and its own workload.  In 
what follows, we provide the details of how these calculations will be performed to generate outputs to 
be supplied to the SoS.   

The three internal phases in the project are:  “initial,” “intermediate,” and “completion.”  Each of these 
will be considered to be states in an absorbing Markov chain in which the absorbing state is completion.  
We will assume that after unit time (e.g., one cycle), the project will move from one state to the next 
with a given probability.  The input chromosome will be converted into a matrix of 0s and 1s, which will 
essentially represent the nature of interaction and the workload imposed on the system under 
consideration.  These inputs will be used to compute the number of systems with which the current 
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system must interact.  This number will be used to compute the probabilities of the Markov chain.  From 
the one-step transition probabilities of the Markov chain, it is possible to estimate the mean amount of 
time needed for completion of the project.  If the resources are assigned according to the worst-case 
scenario, the mean time of the project completion will be used to estimate the level of cooperation.   

Notation:  

• n: number of systems in SoS 
• i: index of the system under consideration, where i = 1,2, …n  
• pi: performance desired from system i by SoS 
• C: system architecture (interface): chromosome (matrix of 0s and 1s) 
• di: delivery deadline set for system i by SoS 
• fi: funds allocated to system i by SoS; values for i = 1,2, …n  will be provided to the ith system  
• Δpi: the difference in the performance that system i expects to deliver  
• Δfi: the difference in the funding that system i requires  
• Δdi: the difference in the deadline by which system i expects to deliver  
• η: selfishness parameter in the interval (0,1] that SoS can adjust to obtain a spectrum of 

participating systems ranging from very unselfish to very selfish; 0 being very selfish and 1 
being very unselfish (selfless) 

• l and m: additional system behavior parameters, each taking values in the interval (1,2], 
which the SoS can change to obtain a whole spectrum of participating systems ranging from 
very fast to very sluggish; 1 being very fast and 2 being very sluggish.   

 

We will need some additional notation required in the internal calculations of the model that we will 
define later.  The Markov chain of the internal system dynamics will be defined by the following 
transition probability matrix: 

⎣
⎢
⎢
⎢
⎡
𝑘
𝑙𝑛

1 −
𝑘
𝑙𝑛

0

0
𝑘
𝑚𝑛

1 −
𝑘
𝑚𝑛

0 0 1 ⎦
⎥
⎥
⎥
⎤
 

where state 1 is the initial phase, state 2 the intermediate phase, and state 3 the completion phases.  In 
the above, k will denote the number of systems with which system i will interact.  The parameters l and 
m will be additional system behavior parameters that the SoS will be able to change at will.  The value of 
k is computed from the chromosome C.  The, using standard analysis of an absorbing Markov chain 
[141], the number of expected cycles needed to complete the project starting at the initial phase will be 
computed.  This number will be denoted as τi for the ith system.  We now explain how the absorbing 
Markov chain analysis is performed.  We construct the so-called Q-matrix from the transition probability 
matrix as follows eliminating the completion phase:  
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𝑄 =  �

𝑘
𝑙𝑛

1 −
𝑘
𝑙𝑛

0
𝑘
𝑚𝑛

� 

Then, the following operation is performed: 

𝑀 = 𝐼 −  𝑄 

where I denotes the identity matrix.  Let N denote the inverse of M.  Then, the expected numbers of 
cycles to completion are computed as follows: 

𝑇 = 𝑁 ∙ 𝐶 

where T and C are column vectors.  C is a column vector of ones, and T(1), the first element in the 
column vector, will equal τi.  Setting k = n and repeating the calculations above, we will obtain an upper 
limit on the expected number of cycles needed for completion; this limit will be denoted by τmax.  The 
willingness to cooperate will then be computed as: 

𝛷 = 1 −  
𝜏𝑖

𝜏𝑚𝑎𝑥
 

Then, the actual performance of the system will be given as 

𝑝𝑖  𝛷 

which would imply that the change in performance will be given by: 

𝛥𝑝𝑖 = 𝑝𝑖(𝛷 − 1) 

Further, the deadline, i.e., the number of cycles, by which the system will be able to deliver, will be   
computed as  

𝑑𝑖
𝛷

 

 

The above scalar is rounded up to the next higher integer.  The above implies that the requested    
change in the deadline will be: 

𝛥𝑑𝑖 = 𝑑𝑖(
1
𝛷
− 1) 

And finally, we now show how the requested change in the budget will be computed.  We use 𝐵�  to 
denote the upper limit on the budget, which will effectively serve as its own estimate of the upper limit, 
which is  computed as follows:  will be computed as: 
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𝐵� =   
𝑓𝑖
𝜂

 

 

where η is the opportunistic parameter.  For a very selfless system (η =1), 𝐵�  will be computed as the 
actual funds provided divided by this opportunistic parameter.  A very selfless system will assume that 
the funds provided to itself form the upper limit and that there are no other funds available for use.  A 
selfish system with η <1 will assume that the limit is (1/η) times the funds provided to itself.  Then, the 
maximum rate at which the SoS can fund projects will be computed as: 

𝜌 =  
𝐵�

𝜏𝑚𝑎𝑥
 

 

Then, the actual funding needed by the system will be computed as  

𝜏𝑖𝜌 

This would imply that the change requested in the funding will be: 

𝛥𝑓𝑖 = 𝜏𝑖𝜌 − 𝑓𝑖 =  𝜏𝑖
𝐵�

𝜏𝑚𝑎𝑥
− 𝑓𝑖 

Setting η to a very small positive number close to 0 produces a system that is very selfless, while setting 
it to 1 produces a very selfish system.  Thus, a large number of systems can be generated during the 
negotiation process by assigning a range of values to η, e.g., 0.01, 0.02, 0.03, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 
0.9, 0.99, 0.999.  Also, by varying the values of l and m in the range (1,2], one can obtain a range of 
systems whose ability to meet deadlines and deliver performance levels varies from very fast (e.g., 1.01) 
to very sluggish (2 

 

4 Implementation of Multi- Agent Based Architecture Model for 
Acknowledged SoS 

4.1 Agent Based Model Framework (ISR) 
This phase of the report describes the implementation of the wave model in ABM for the ISR 
framework.  Two domains:  ISR and SAR were studied in the architecture selection part of the program.  
ISR is implemented through the ABM portion.  Figure 14 describes the transition states of the SoS agent 
and the system agents.  The transition states of the SoS agent are analogous to Dahman’s wave model 
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proposed for Acknowledged SoS.  The wave planning methodology was originally proposed by Dombkins 
[155]. 

 

 

 

Figure 14.  Transition states of the ABM, and member system types 

Figure 14 is the part of the user interface of the ABM. On the left can be seen different transition states 
of each systems agent and SoS agent. Each state is represented by a different color to make it easier to 
recognize the state of each agent while the model is running. On the right in the figure, the names of 
each system are printed along with the corresponding system number. 

The table 5  reflects how many capabilities each participating system possesses. For example, System 1 
through 7 possess capabilities C1 and C5, System 8 and 9 hold just one capability C1. System 10 through 
13 holds capabilities C2 and C5 and so on. 
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Table 5.   Display of systems with their corresponding capabilities 

 

 

The ABM incorporates three techniques of meta-architecture generation namely fuzzy-genetic 
approach, multi-level optimization and multi-objective optimization. The user (Acknowledged SoS 
manager) interface initially allows choosing the preferred meta-architecture generation technique for 
the domain specific information.  The user can then define the preferred architecture quality on a scale 
of 1 to 4 in the continuous domain as a threshold for the final architecture.  Number of negotiation 
cycles that the SoS agent can have with the individual system agents can also be predefined by the user.  
Other parameters, which are user-defined, include: 

1. Setting the parameter values for the 3 individual system negotiation models 
2. Parameters for SoS agent negotiation model 

Figure 15 and 16 show the user interface for entering input values required to run the ABM framework.   

The SoS agent state chart can be visualized in Figure 16. The directed arrows indicate the transition 
direction of the agent from one state to the other. After entering the required inputs to run the model, 
ABM initializes the SoS agent.  This can be visualized as the SoS agent, which is represented by a circle 
on the interface, turns cyan in color.  Consequently, it quickly transitions to Conduct_SoS_Analysis state.  
During this state, the SoS agent executes the meta architecture generation procedure selected by the 
Acknowledged SoS manager.  This also starts the first wave of the ABM model.  The execution outputs a 
meta-architecture in the form of a genetic chromosome as described in section 3.2.3.  Using the meta-
architecture generated the procedure creates 22 system files.  These files contain the information that 
needs to be disseminated to the system agents.  Figure 17 illustrates the information given to system 1 
for acquiring capabilities.  Since system 1 possesses 2 capabilities which are C1 and C5, hence only 2 
rows contain information on deadline, performance, and funding. 
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Figure 15.  ABM User Interface 

 

 

Figure 16.  ABM SoS Agent Statechart 
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Once the SoS agent has completely executed the meta architecture generation process it transitions to 
Develop_Evolve_SoS_Architecture state.  The SoS agent sends a message to all individual systems to 
transition them from the Prep state to Initialize_System state.  During this stage the system agents get 
activated and SoS agent disseminates the information in the form shown below to acquire capabilities. 

This also starts the first epoch of negotiation between SOS and System agents.   

 

Figure 17.  Input file format for capabilities, a system and its interfaces, and deadline, funding and performance 
expectation 

 

Figure 18 illustrates the state chart of individual system agents. The individual systems agents are 
preselected to have either of three negotiation models.  On receiving the information, they execute 
their negotiation models to estimate requirements in terms of funding, performance and deadline for 
the development of required capabilities.  The state of System agents can be visible on the ABM 
interface by the color of the small oval shape (represents the individual system agents).  The systems 
reply with an offer in terms of difference of provided attribute values and the required amount.  These 
are termed as delta funding, delta deadline, and delta performance respectively.  A graphical 
presentation can be observed to gauge the comparison in delta values and actual values provided by the 
SoS as illustrated in Figure 19.   

After SoS receives the reply from all individual system agents, the first epoch ends.  Now SoS executes 
its negotiation model to decide which system should be a part of the overall architecture based on the 
delta values.  SoS agent forms a new architecture based on its negotiation and evaluates its quality 
through the fuzzy assessor.  If the architecture quality is below the threshold set by the Acknowledged 
SoS manager, SoS agent goes for another round of negotiations.  This starts the second epoch.  As 
explained above each negotiation initiates similarly.  At the end of each negotiation offer and reply, the 
SoS agent decides to select system for participation in the overall mission and calculates the architecture 
quality.  The negotiation keeps on going until maximum number of negotiations has been reached or the 
architecture quality is greater or equal to the threshold value.  This also concludes the first wave of the 
ABM. 

 

deadline funding performance
Sj Ij,1 Ij,2 Ij,3 Ij,4 Ij,5 Ij,6 Ij,7 Ij,8 Ij,9 Ij,10 Ij,11 Ij,12 Ij,13 Ij,14 Ij,15 Ij,16 Ij,17 Ij,18 Ij,19 Ij,20 Ij,21 Ij,22 SoS.di SoS.fi SoS.pi

C1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 10.1 21

C2 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C5 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 10.2 23

Architecture (the portion related to system j)
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Figure 18.  ABM Individual System Agent sate chart (Negotiation Model Choices for Systems) 

 

 

 

Figure 19.  Attributes Status before and after negotiations 

 

In case the SoS architecture quality is not able to reach the threshold value after the maximum number 
of negotiations, SoS agent transitions back to Conduct_SoS_Analysis state.  SoS then re-executes a meta-
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architecture generation procedure to come up with a new meta-architecture.  This helps in re-exploring 
the trade space for another possible solution.   

After he final architecture for the current wave has been selected the SoS agent transitions to the 
Plan_SoS_Update state.  During this stage SoS plans for the next wave cycle, upgrades and reevaluates 
its parameters.  Finally, SoS transitions to the Implement_SOS_Architecture state.  The architecture is 
ready to be implemented by the Acknowledges domain manager.  The next wave starts from the point 
where the first wave ends.  The final architecture obtained in the previous wave becomes the 
commencing point for the next wave of modeling. 

There were two challenges to the Agent-Based Model: Generality and Integration.  Generality meant 
creating and ABM that would be applicable and adaptable to any domain.  Integration meant interfacing 
the ABM with the three negotiation models namely selfish, opportunistic and cooperative, developed in 
MATLAB.   

4.1.1 Generic Agent-Based Model 
As mentioned in [9], the SoS development follows a Wave Model.  The ABM was built based on this 
Wave Model and the ABM reflects the behaviors inherent in an Acknowledged SoS [8].  This research 
showed that the domain specific area in an Acknowledged SoS development was in the evaluation of an 
SoS architecture.  This SoS architecture evaluation is done in the Fuzzy Assessor and the domain specific 
part of the Fuzzy Assessor are the Fuzzy Rules.  In order to make the ABM generic to any domain, the 
Fuzzy Assessor was implemented in the SoS agent using a Fuzzy Associative Memory (FAM).  The SoS 
agent reads in the FAM from an Excel file during initialization.  In this way, a user can specify the domain 
specific Fuzzy Rules in an Excel file and the ABM can simulate the SoS development for that domain.   

4.1.2 ABM Integration 
Multiple models were developed as Matlab executable’s independently by different researchers.  The 
second challenge was how to integrate these models with the ABM.  The models developed in Matlab 
were: 

• SOS Meta-Architecture Models (3) 
• Fuzzy Assessor 
• SoS Negotiation Model 
• Selfish System Negotiation Model 
• Opportunistic System Negotiation Model 
• Cooperative System Negotiation Model 

The ANYLOGIC software used for agent based modeling has the capability to interface with excel files. 
Hence, the interface between the above mentioned  models and ABM was through Excel files.  All 
Models were called as an executable through Anylogic. 

At the beginning of the epoch, the ABM calls the Meta-architecture generation executable file to get the 
initial SoS architecture and is recorded in a Excel file.  This executable writes the initial performance, 

 
Contract Number: H98230-08-D-0171                                                 WHS TO 029, RT 044: Enterprise and System of Systems Modeling  Part 3 

Report No.  SERC-2013-TR-021-3 
18 November 2013 

 87 



UNCLASSIFIED 

funding, and deadline for each system to an Excel file.  In order to prevent possible file access 
contentions, there is one Excel file for each system in the simulation that contains the performance, 
funding, and deadline for that system.  The fuzzy assessor executable computes the architecture quality 
and values for each of the key performance attribute of the SoS.  The overall SoS fitness measure is used 
within both the GA and the ABM portions of the framework to compare different chromosomes, or 
examine the impact of changes to negotiation rule sets or environment values for the same 
chromosome, and other products of analysis. 

After the SoS reads the initial SoS architecture from the SoS architecture Excel file, the SoS then sends 
the Request for Connectivity message to each system in the simulation.  There is one instantiation of the 
system agent for each system in the simulation.  Funding is proposed by the SoS Agent once per epoch 
to each System.  The SoS agent may include information about the desired interfaces in the allocation to 
each System and Capability, but funding is not spread directly to the interfaces by the SoS Agent, only to 
the System.  Deadlines and Performance are handled the same way, one for each System and Capability. 

Once the system has received the Request for Connectivity message from the SoS, the system calls the 
Matlab executable file that contains the system negotiation model assigned to that system.  The results 
are placed in a second sheet named as output on the same excel file.  The SoS agent read the excel file 
to run the SoS negotiation executable.  The final architecture is placed in the excel file and is 
represented as a network of nodes and arc as shown below in Figure 20 which also shows the 
integration. 

 

 

Figure 20.  Overall Agent-Based Implemented Model Architecture 
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4.2 ISR and SAR Demonstration Domain Information  

4.2.1 Historical Example 
A guiding physical example is taken from history.  During the 1991 Gulf War, Iraqi forces used mobile 
SCUD missile launchers called Transporter Erector Launchers (TELS) to strike at Israel and Coalition 
forces with ballistic missiles.  Approximately 50-60 TELs were hidden in the western Iraqi desert, from 
which Iraqi forces launched over 200 missiles during the 30 day conflict.  The Iraqi forces had developed 
new techniques called “shoot and scoot” that allowed them to reduce the TEL vulnerability time to half 
an hour to come out of hiding, set up, launch, and return to their hiding places.  This was only one third 
of pre-war estimates, and a great surprise to Coalition planners [156].  While the relatively inaccurate 
Scuds were not a tactically significant factor in the war, they had a significant strategic impact on morale 
and cohesiveness of the Coalition.  Therefore, the TELs became a “high value, fleeting” target.   

Existing intelligence, surveillance, and reconnaissance (ISR) assets were inadequate to find the TELs 
during their vulnerable setup and knock down time.  The “uninhabited and flat” terrain of the western 
desert was in fact neither of those things, with numerous Bedouin goat herders and their families, 
significant traffic, and thousands of wadis with culverts and bridges to conceal the TELs and obscure 
their movement.  In addition, Iraqi forces produced some very fine camouflage and realistic decoys 
[157].  Even though thousands of sorties were flown, during hundreds of firing opportunities, TELs were 
spotted only 11 times, and the contacts were lost before completing an attack eight of those 11 times.  
The average time between spotting and arriving at a potential target was 90 minutes, which might have 
been marginally acceptable before development of the shoot and scoot tactic [156].  This offers a prime 
example of existing systems being inadequate to address a mission, but some relatively low cost, quick 
changes, and joining together of existing Systems might have been used to create an SoS capability to 
achieve the mission. 

Applying the method described in section 2.5.3 above to the ISR problem resulted in the following input 
domain parameters.   

4.2.2 ISR Domain model 
The characteristics of the SoS reached by consensus of stakeholders and subject matter experts (SMEs) 
are listed in Table 6.   

Most important requirements of the ISR SoS reduced down through the SME discussions to the 
following four attributes, measurable by operations on the chromosome describing the SoS: 

• Performance as the sum of the square miles of terrain searched and targets found per hour, 
divided by the search area 

• Affordability given by total cost ranges of development and operation of the SoS; less cost is 
more affordable 
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Table 6.  ISR SoS domain example characteristics 

 

Overarching 
Purpose of SoS 

ISR & Targeting of Gulf War Scud TELs 

Unique value of 
SoS 

Existing non-networked systems not doing job 

SoS Measures of 
Effectiveness 

Probability of successful engagement per day 

Issues that 
might limit 
effectiveness 

SCUD TEL concealment and countermeasures 
Short time of exposure of TEL before and after launch 

SoS features 
that might 
greatly increase 
effectiveness 

Improved probability of detection in presence of concealment 
Significantly Improved speed of response 

Desired 
Effectiveness 

About 1 successful engagement per day or more 

Stakeholders Operating commands, system operators/crew/maintainers, intel agencies, coalition 
partners, regional states, system program offices, troops in theater, contractors, 
Congress, DoD, enemy forces 

ROM Budget: 
Development 

About $40 Million 

ROM Budget: 
Operations 

About $40 Million 

Attributes of the 
SoS, and range 
limits for fuzzy 
evaluation 

Performance  Find and attack within half a hour; find >1 per day 
Affordability  <$100M for development and thirty day operation 
Robustness  <15% performance loss for loss of any single system 
Flexibility  Very few single source per capability 

Capabilities of 
contributing 
systems 

EO/IR 
Synthetic Aperture Radar 
Communications 
Command & Control 
Exploitation 

 

• Flexibility in terms of development –multiple sources are available for each capability 
• Robustness, defined as the smallest maximum loss of performance by successive removal of 

each participating system [158] [37] 

Performance and affordability are augmented by a factor depending on the interconnectedness 
(interfaces) represented by the chromosome. 

The capabilities of the ISR SoS, contributed by the constituent systems were broken down as: 

• Electro-Optic/InfraRed (EO/IR) search capability 
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• Side looking, synthetic aperture radar (SAR) 
• Command and control facilities 
• Exploitation centers (smaller ones in theater and a large one in CONUS) 
• Communication capabilities, both line of sight (LOS) limited to in-theater, and beyond line of 

sight (BLOS) 

Taking a slight poetic license with respect to the historical example, we proposed the following types of 
systems, with the non-communication systems limited to one primary capability plus communications: 
(i) Fighters, some equipped with an EO/IR capability, some with SAR, (ii) Remotely Piloted Aircraft (RPA), 
equipped with better EO/IR capability, (iii) U-2 aircraft, primarily equipped with EO/IR capabilities, but 
limited to film, so that system is not timely, but can help reduce the overall search area for the other 
systems, if it participates, (iv) Defense Support System (DSP), that can survey the entire area, but only 
provide notice on actual launch, reducing the time for the fighters to arrive before they’re hidden again, 
(v) JSTARS, with large SAR, (vi) Control Stations for the RPA, (vii) ISR data Exploitation centers, (viii) 
Communication systems, LOS and BLOS, that enable the interaction between systems that make the SoS 
work. 

Working from the ground up, a possible set of capabilities and costs of systems and interfaces for a SoS 
to address the Gulf War TEL problem are shown in Table 7. This resulted in an ISR SoS with 22 potential 
systems of 9 types, with 5 different capabilities among them, with at most 2 capabilities per system. 

Table 7.  Domain model of SoS with 22 Systems:  Capabilities, Costs, and Schedules 

 

System Type Sub-
System 

Cap 
ability 
Numb
er 

Coverage sq 
mi/hr;  

Develop 
$M/ 
epoch/ 
interface 

Operate 
$K/hr 
per 
system 

Time to 
Develop, 
Epochs 

Number 
possible 
in SoS 

System 
Number 

Fighter EO/IR 1 500 0.2 10 1 3 1-3 
RPA EO/IR 1 2000 2 2 1 4 4-7 
U-2 EO/IR 1 50000 0 15 0 1 8 
DSP IR 1 100000*.01 1 1 1 1 9 
Fighter Radar 2 3000 0.7 10 1 3 10-12 
JSTARS Radar 2 10000 0.1 18 1 1 13 
Theatre Exploit 4 5000 2 10 1 2 14-15 
CONUS Exploit 4 25000 0.2 0 0 1 16 
Control 
Station/ 
AOC 

Cmd & 
Control 

5 1 1 2 1 2 17-18 

LOS Link Comm 3 1 0.2 0 1 2 19-20 
BLOS 
Link 

Comm 3 1 0.5 3 1 2 21-22 

The Inputs from Table 7 were adjusted slightly to simplify the model by scaling all the capability 
contributions to be relative to square miles searched per hour.  This allowed a simpler performance 
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algorithm to be implemented in the fuzzy fitness assessor.  The equivalent input data to Table 7  are 
shown in the Excel input sheet shown in Figure 21. 

 

 

Figure 21.  ISR domain specific input data 

The binary matrix of capabilities contributed by systems is shown in Figure 22 .  It is equivalent to the x’s 
in the cells on the right side of Figure 21. The ISR model of 22 systems is the one currently being 
implemented further in the ABM model. 

 

 

 

Figure 22.  Binary matrix of capabilities vs. systems 

 

4.2.3 Search and Rescue (SAR) Domain 
We were interested in applying this method to a second domain to insure the fuzzy evaluation and GA 
worked as planned.  A Coast Guard Search and Rescue (SAR) problem serving the Alaskan coast was 
selected.  When there is a vessel in distress, the law of the sea requires other mariners to go to its aid.  

Name ISR
NumSys 22 m 
NumCap 5 n sys has capability, costs, perf, deadline 1 2 3 4 5
SysNo Type Capability I/FDevCosOpsCost/hPerf DevTime EO/IR SAR Exploit C2 Comm

1 fighter 1 0.2 10 10 1 x x
2 fighter 1 0.2 10 10 1 x x
3 fighter 1 0.2 10 10 1 x x
4 RPA 1 0.4 2 10 1 x x
5 RPA 1 0.4 2 10 1 x x
6 RPA 1 0.4 2 10 1 x x
7 RPA 1 0.4 2 10 1 x x
8 U2 1 0 15 3 0 x
9 DSP 1 1 0.1 8 1 x

10 ftrSAR 2 0.7 10 15 1 x x
11 ftrSAR 2 0.7 10 15 1 x x
12 ftrSAR 2 0.7 10 15 1 x x
13 JSTARS 2 0.1 18 40 1 x x
14 ThExp 3 2 10 10 1 x x
15 ThExp 3 2 10 10 1 x x
16 ConUS 3 0.2 0.1 15 0 x x
17 CmdCont 4 1 2 12 1 x x
18 CmdCont 4 1 2 12 1 x x
19 LOS 5 0.2 0.1 10 1 x
20 LOS 5 0.2 0.1 10 1 x
21 BLOS 5 0.5 3 10 1 x
22 BLOS 5 0.5 3 10 1 x

Capability CapName Cap-Sys1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 EO/IR 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 SAR 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
3 Exploit 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
4 C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
5 Comm 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
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The Coast Guard has numerous systems with differing capabilities such as cutters, aircraft, helicopters, 
communication systems, and control centers available from several stations in the area.  In addition, 
fishing vessels, civilian craft, and commercial vessels join in an ad hoc SoS to provide assistance when a 
disaster strikes.  The method described in section 2.5.3 was applied again.  Background information was 
gathered (references) and SMEs were consulted.  A sample SAR SoS with 29 systems of 9 types, with 10 
different capabilities, with as many as 9 capabilities per system is shown in Figure 23 and 24. 

The Search and Rescue (SAR) mission aims to minimize loss of life, injury, and property damage or loss at 
sea by finding and providing aid to those in distress. The SAR mission framework is inclusive of many 
activities from conducting search planning and coordinating SAR response, actual searching for, locating, 
and rescuing mariners and others in distress, providing necessary medical advice, assistance, or 
evacuation, and provide, when necessary, persons in distress safe transport to shore. Various 
components, such as Coast Guard cutters and helicopters, commercial and private sea vessels, 
Unmanned Vehicles (UVs), and private pilots and aircraft have some reconnaissance capability that may 
be brought together in a System of Systems (SoS) construct to assist in this ever evolving mission. [159] 
[160] 

As defined in the National Search and Rescue Plan, ref (a), and Supplement, ref (b), participating search 
and rescue organizations may obtain permissible assets within the required SAR regions at any notice. 
These regions include all waters subject to U.S. jurisdiction and international waters in the Atlantic, 
Pacific, and Arctic Oceans and the Gulf of Mexico. Additional regions include identified Department of 
Defense (DoD) Area of Responsibilities (AORs).  Partnerships exist among maritime industry in the 
Automated Mutual-Assistance Vessel Rescue (AMVER) system, and coordination among Federal, state, 
local, and tribal authorities to coordinate SAR operations is extensive.  This section describes an example 
operational context for SAR missions, for which optimal SoS configurations can be determined given 
specific mission parameters and tradeoffs among SoS attributes such as performance, flexibility, 
robustness, and affordability.  [159] [160] 

Use of the Bering Sea and the Arctic by commercial fisheries, oil exploration and science is increasing.  
With the rise of the number of people and vessels in the area, the likelihood of a large SAR scenario 
occurring increases.   

Possible missions related to this setting are summarized in Table 9: 
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Table 8.  Characteristics of a SAR SoS 

Overarching 
Purpose of SoS 

1) Maritime Search & Rescue (SAR) of Bering Sea small airliner crash at sea 
2) Stranded Cruise Ship in Other Territorial Waters 
3) Find Two people in a small boat 

Unique value of 
SoS 

Greatly enhanced SAR Capability 

SoS Measures of 
Effectiveness 

Time to search 100,000 Sq Mi 
Probability of detection of survivors within 2 hours/within 12 hours 

Issues that might 
limit 
effectiveness 

Weather 
Availability of participant systems 
Language barriers 
Number of Survivors 
Sovereignty questions 

SoS features that 
might greatly 
increase 
effectiveness 

Speed of discovery 
Improved coordination of resources 
Ability to Prioritize resources at time of event, or during development 

Desired 
Effectiveness 

Find someone very fast and/or help lots of people relatively fast 

Stakeholders Federal, State, Local, Tribal, NGOs,  Foreign, Crews, Survivor, Military, Coast Guard 
ROM Budget: 
Development 

$15M 

ROM Budget: 
Operations 

$10M 

Attributes of the 
SoS, and range 
limits for fuzzy 
evaluation 

Performance time to find someone before death by exposure or injury 
Affordability  budgetary pressures, small civilian investment 
Robustness   still works with only partial complement of systems 
Flexibility  many choices of partners achieve all capabilities 

Capabilities of 
contributing 
systems 

EO/IR 
Night Vision 
Maritime Radar 
Emergency Locator Beacon System 
RF direction finder 
Deliver Paramedic/medical aid 
Remove survivor(s) to Emergency Medical Care 
Provide major medical capability 
Speed – Fast/Slow 
Time on Station 
Communications 
Command and Control/Coordination 
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Figure 23.  The fuzzy assessor model inputs for the SAR SoS 

 

Table 9.  Possible SAR Scenarios 

Scenarios 
1 A large sinking ship, cruise lines, or commercial freighter.  

Rescue of passengers, and/or a potential exposure of hazardous 
material (oil). 

2 A ship stuck in the ice in the arctic ocean. 
3 A commercial plane crash. 
4 An oil rig disaster (explosion, etc.). 

 
The basic conceptual radius of operation for the purposes of this application will include the Bearing Sea 
and the Gulf of Alaska as represented in the Figure 24. Extended loiter radii for airborne ISR mission 
profiles may extend the conceptual SAR mission profile to include the North Pacific Ocean, Chukchi Sea, 
Beaufort Sea, and Artic Ocean.  

 

Name SAR A
NumSys 29
NumCap 10 1 2 3 4 5 6 7 8 9 10
SysNo Type Capability I/FDevCosOpsCost/hPerf DevTime IR – range  Night Visio     Visual – ra   Maritime R     RF Directio      Deliver Me      Remove su     Speed 300 Speed 15 mCommunic

1 Cutter 7 0.03 2 12 1 x x x x x x x x
2 Cutter 7 0.03 2 12 1 x x x x x x x x
3 Helicopter 6 0.1 2 20 1 x x x x x x x x x
4 Helicopter 6 0.1 2 20 1 x x x x x x x x x
5 Aircraft 8 0.1 5 10 1 x x x x
6 Aircraft 8 0.1 5 10 1 x x x x
7 UAV 1 0.1 0.1 7 1 x x x x x x
8 UAV 1 0.1 0.1 7 1 x x x x x x
9 UAV 1 0.1 0.1 7 1 x x x x x x

10 UAV 1 0.1 0.1 7 1 x x x x x x
11 UAV 1 0.1 0.1 7 1 x x x x x x
12 UAV 1 0.1 0.1 7 1 x x x x x x
13 UAV 1 0.1 0.1 7 1 x x x x x x
14 UAV 3 0.1 0.1 7 1 x x x x x x
15 UAV 3 0.1 0.1 7 1 x x x x x x
16 UAV 3 0.1 0.1 7 1 x x x x x x
17 UAV 3 0.1 0.1 7 1 x x x x x x
18 Fish Vesse 3 0.03 0.5 4 1 x x x x x x
19 Fish Vesse 3 0.03 0.5 4 1 x x x x x x
20 Fish Vesse 3 0.03 0.5 4 1 x x x x x x
21 Fish Vesse 3 0.03 0.5 4 1 x x x x x x
22 Fish Vesse 3 0.03 0.5 4 1 x x x x x x
23 Civ Ship 7 0.05 2 8 1 x x x x x x
24 Coord Ctr 5 0.05 0.5 5 1 x x x x
25 Coord Ctr 5 0.05 0.5 5 1 x x x x
26 Communic 10 0.02 0.03 1 0 x
27 Communic 10 0.02 0.03 1 0 x
28 Communic 10 0.02 0.03 1 0 x
29 Communic 10 0.02 0.03 1 0 x
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Figure 24.  Conceptual SAR Operating Radius (Google Maps, 2013) 

 

Costs for developing the interfaces were assigned to each system, as well as a cost for operating the 
system for a month in the case of the ISR or for 3 days in the case of the SAR.  The deadline for 
development of an interface was assigned a value of:  0 – ready now, 1 – will be ready by the end of this 
epoch, or 2 – won’t be ready this epoch, but the next.  You may spend interface funds on an interface 
that won’t be ready until the next epoch, but you get no performance increment from that interface in 
this epoch.  An overall ‘relative’ performance value was assigned to each system based on its key 
capability.  The costs for development were rough figures similar to what appear in official and informal 
budgetary estimates for interfacing with communications systems and integrating the mission systems 
to be able to interoperate.  The costs to operate aircraft or other systems were determined similarly, in 
units of thousands of dollars per hour.   

A Model Building Basis for SAR 
New tools are being developed that could make the integration of the SoS exploration and analysis tools 
developed here even easier to use.  When we built the SAR model, we looked into auto generating the 
domain input data from a more general model of the system.  It does appear possible, but some 
development would have to be done.  The activity diagram in Figure 25 built using classes that equate to 
the types of systems we used in this effort, is an example of the way that today’s architects are being 
taught.  This is the way they’ve been trained to think and communicate architecture concepts to others.  
This relatively new tool can already auto generate an execution timeline shown in Figure 26.  Multiple 
executions can be set up in Monte Carlo simulations to obtain analysis statistics as well.  This is the type 
of connection between tools that might be fruitful to pursue in future work.   
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Figure 25.   Activity diagram matching the CONOPS of the SAR model 
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Figure 26. .  Execution timeline example for SAR model 

4.2.4 Mapping Attribute Measures to Fuzzy Variables 
The generic membership function discussed, section 3.2.2 must be mapped to the values of the domain 
specific SoS.  In a real problem, this mapping of ranges for estimated values for cost estimates vs. 
budget, or performance in terms of square miles searched per hour or tons of freight delivered would 
come from the problem and the stakeholders.  The probability of success, or the number of shipments 
would have desired thresholds that would define the unacceptable, marginal, acceptable, or exceeds 
expectations grade for each attribute.  Since we were attempting to explore the entire meta-
architecture space with formulation, we came up with a backwards method of defining the membership 
functions.   

After assigning the rough performance, cost, and capability mapping to individual systems selected, we 
created random chromosomes with the varying bias toward ones through the evaluation algorithms to 
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see where the possible values came out.  Two example random but biased populations of 25 
chromosomes are shown in Figures 27 and 28 for the 22 system ISR SoS.  Explanations of these charts 
are presented in Table 10:   

Table 10.  Explanation of value exploring graph pages 

 

1) On the first row of graphs, the number of ones in the whole chromosome (in blue) 
and five times the number of systems in the chromosome (in red) plotted together 
on the same scale  

2) The overall sos evaluation on the 1 to 4 scale of unacceptable to exceeds 
expectations 

3) The performance of each of the chromosomes, with dashed lines of different colors 
representing the edges of the membership functions 

4) The flexibility attribute evaluation of each chromosome 

5) On the second row of graphs, the maximum loss in performance by successive 
individual system removal of each participating system – that is, the robustness 
attribute 

6) The value of the penalty/reward function for using infeasible/feasible interfaces for 
each chromosome 

7) The total cost for each chromosome, and  

8) The affordability, which is the total cost modified by (one minus the bump) raised to 
the penalty/reward power, as desribed in section  above.   
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Figure 27.  Exploring the meta-architecture - 25 chromosomes, example 1 
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Figure 28.  Exploring the meta-architecture to map membership function edges, Example 2 

 

By running a few thousand random chromosomes (with the biased number of systems and interfaces) 
through the fuzzy evaluation subroutine, one can settle on adequate values for the membership 
function edges to show there are good solutions possible within the model, shown in Figure 28.  This is 
not the ‘finding the best chromosome’ process, but only setting the membership functions so we can be 
sure of finding some acceptable chromosomes during the GA from which to select better mutations 
from each generation.  You can also see similar shapes of the functions for each of the attributes and 
the penalty function on Figures 29 and 30. One important feature is that tiny changes in the 
chromosome can have wide swings in the values of each of the attributes.  The search for a ‘good’ 
chromosome is really that, a search for it – it is not obvious where it is from the build up of the model. 
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Figure 29.  Setting the membership function edges for the attributes 

 

It takes only a few minutes to run 1000 ‘almost’ random chromosomes through the exploration phase.  
Some iterations on selection of the mapping values for the boundaries between membership functions 
may be required.  If one selects values that are too tight, such as with a high performance, the 
robustness limits may need to be adjusted.  The ISR membership function mapping is shown in  When 
the membership function edges, the input domain specific costs and performances, and the limits for 
the robustness function are selected so that there are at least some chromosomes that are performing 
well, the next step is to run the full fuzzy model through the GA for 60 to 100 generations, as discussed 
in section 4.2.  Minor kinks in the mapping lines show that the slopes of the membership function maps 
do not need to be constant as shown in Figure 30. 
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Figure 30.  Attribute Values, Mapped to Fuzzy Variables 

 

4.2.5 Rules For Combining Attribute Valuations To An SoS Evaluation 

Performance Attribute: 
Performance – for the ISR Domain example is made up of surveillance coverage in area per hour and 
wavelength region, combined with ability to reach the site of a discovered but fleeting high value target 
before it disappears.   

• Background Assumptions:  100,000 square miles in which to hide; 30 minutes from start to finish 
for an operational launch; about 60 TELs operational; an individual TEL might hide for several 
days, so the probability of an individual TEL popping out to make a launch is only about 10% per 
day. 
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Rules for combining capabilities into performance: 

• Fighters can provide modest capability in non-traditional ISR with on board sensors, and deliver 
several weapons, but they cost more to operate than many other systems  

• Remote Piloted Aircraft (RPAs) can provide better ISR capabilities with somewhat less speed and 
single weapon capabilities, but also require a control station for each 2 RPAs.  They are 
considerably cheaper to operate than fighters 

• JSTARS can provide considerable radar ISR, and LOS and BLOS relay, but no weapons 
• DSP can provide reliable notice of an actual launch, which means there definitely was a TEL in 

the open at that launch point, but it is not very precise localization of that point, meaning some 
search is still required upon an armed vehicle’s arrival in the vicinity, and it takes a couple 
minutes to receive the data from DSP.  The TEL can hide quickly after launch, leaving not much 
time to arrive there, find and attack it before disappears again.  In the performance model, I 
multiplied the DSP coverage by 0.01 to account for the likely lack of closure from a DSP 
detection 

• U-2 or Satellite can cover large area with high resolution, but turnaround time is hours; 
participation of U-2 or Satellite effectively decreases total area to be searched by other ISR 
platforms by a reasonable percentage, but does not affect real time surveillance.  DSP is 
basically free, because it is used for other purposes 

• Area to be covered is divided into sectors among the participating surveillance systems 
• Time to arrive is proportional to the square root of the sector area being covered by each type 

of system, plus some time for transmitting data to, and double checking by, the exploit systems 
to insure the target is valid and not in a restricted area 

• Probability of successful engagement is defined as 50% if coverage is the total area in half an 
hour, and time to arrive after detection is less than 10 minutes.  Fighters or RPAs making the 
discovery are able to attack relatively quickly, transit time is less than 5 min for fighters, 10 min 
for RPAs; other types of detection require transit time for the attack vehicle which may be 
longer if it is in a different sector. 

It would be possible to write fuzzy rules for evaluating some or all of the SoS attributes, as well.  Gegov 
develops this concept in a discussion of fuzzy networks.  [161]  

4.2.6 ISR Domain Model Detail 
The ISR Domain Model contains the following types of Systems, with existing capabilities, cost bogeys 
for development and operation, and likely development times as follows:   

• Fighter aircraft with ElectroOptic/Infrared (EO/IR) pods,  
• Fighters with Synthetic Aperture Radar (SAR),  
• U-2 aircraft and Satellites with EO/IR,  
• DSP missile launch detection satellites,  
• JSTARS aircraft with SAR, 6) Remotely Piloted Aircraft (RPA),  

 
Contract Number: H98230-08-D-0171                                                 WHS TO 029, RT 044: Enterprise and System of Systems Modeling  Part 3 

Report No.  SERC-2013-TR-021-3 
18 November 2013 

 104 



UNCLASSIFIED 

• Line of sight (LOS), that is, tactical; and Beyond Line of Sight (BLOS) data links, 
• Exploitation centers in theater as well as in Continental United States (CONUS) for analyzing ISR 

data, and  
• Control stations for the RPAs.   

The five types of capabilities (SOS.Cj) provided by Systems and interfaces listed below are how we build 
up the SoS capabilities: 

• EO/IR 
• SAR 
• Communications links 
• Exploitation Centers 
• Control Centers 

4.3 SoS Negotiation Model Implemented 
The current SoS negotiation model can be describes as follows: 

If the change in performance required by SoS and offered by system agent is less than 50% or the 
change in funding offered by the SoS to acquire the capability and demanded by system agent is greater 
than 50%, SoS decides to drop the system from architecture.  Similarly, if the system agent does not 
agree to participate in the first wave itself, SoS concludes the negotiation.  These thresholds on funding, 
performance, and deadline can be justified as all changes above or below the prescribed limits ,as the 
case may be, lead to an unacceptable SoS architecture quality.  If the individual system request is above 
these threshold values than SoS manager can start negotiation.   

Moreover if the systems acquiesce to the requirements of the SoS agent in one epoch of negation and 
SoS agent finds the overall architecture quality above the predefined limit set by the acknowledged SoS 
manager, it concludes the first wave of the ABM model. 

Else, if the SoS architecture quality is below the cutoff value SoS starts a fresh round of negotiations (or 
the second epoch) with the system agents.  These negotiations continue until SoS agent achieves the 
cutoff value of the architecture quality.  Consequently if the SoS agent is not able to form an 
architecture god enough to meet the user requirements and the predefined number of negotiations has 
exceeded, SoS agent ends the negotiation and decides the to generate another meta-architecture.  This 
meta-architecture is generated to explore the trade space, as the negotiations are not leading to a 
possibility within the cutoff values.  This process is still in the first wave of ABM. 

Once a wave is concluded, the SoS agent saves the final architecture chromosome as a starting point for 
the next wave of the architecture evolution. 
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4.4 ISR Implementation of Fuzzy Genetic Optimization Model 
Genetic algorithms (GA) have been used to solve the optimization model for the meta-architecture, both 
for suggesting a starting chromosome, and for selecting negotiation solutions between the SoS and 
system agents. 

4.4.1 Representation Of Meta–Architectures In Genetic Algorithm Format 
The chromosomes of the population p in one generation of the GA were represented as a matrix of the 
linear chromosome m(m+1)/2 bits wide by p rows deep.  Each row of the population was evaluated for 
the attributes (determined by the domain input data and the chromosome) and the overall fitness of 
that chromosome (determined by the fuzzy assessment of the four attributes).  The rows were sorted by 
the SoS fitness, and the best 20% (with the addition of one chromosome from each quintile) were 
selected to reproduce to the next generation.  This guaranteed a small fraction of very different 
chromosomes than the top few percent were always included for reproduction.  This helps insure the 
process cannot get “stuck” on a purely local optimum. 

4.4.2 Ensuring Meta-Architecture Generated Provides Desired System Capabilities 
The first generation of chromosomes is generated almost randomly except for a changing bias toward 
ones from first to last in the population.  This is similar to the way we explored the meta-architecture 
space to set the membership function size, described in section 4.2.4.  This insured that the starting 
tournament did not have a narrow range of the number of ones in the chromosome, that is an ‘average’ 
number of systems and an average number of interfaces with small variations around the mean that 
would occur if the population was filled in with equally likely ones and zeroes.  Even though we tried 
creating the population chromosome set randomly, we found this did not “seed” the full range of the 
meta architecture space.  Instead, by biasing each member of the initial population toward an average 
likelihood of ones roughly equal to the ordinal position of that chromosome divided by p, a very wide 
variation in number of systems and interfaces is ensured.  Subsequent generations are generated from 
the top 20% of the population in fitness (tournament winners), through the genetic operators defined 
below.  The best chromosome from each generation is always kept intact. 

To speed convergence, we biased the communication system participation to 60% in the initial 
population.  This was not necessary, but it changed the required number of generations from many 
hundred to less than one hundred consistently.  This was accomplished by changing the (still random) 
likelihood of a 1 in the last four columns in the upper triangular representation to 60%. 

4.4.3 Genetic Operators 
The following genetic operators were used in the GA implementation [81].  The top 20% in fitness is 
replicated 4 more times to fill out the next generation population, then the following genetic operations 
are performed on each 20% of the population. 

• Mutation:  a random number is called from a flat distribution for each bit in the chromosome. If the 
number is less than a settable percentage, typically 0.5% to 2%, (we experimented with rates up to 
10%) then the bit was reversed.  A second 20% of the next generation had a doubled mutation rate. 
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• Crossover:  a random number from a flat distribution is called for each chromosome; this random 
number is multiplied by total bits in the chromosome.  Two new chromosomes are created from two 
old chromosomes by taking the first part of one cut at the random bit just selected and combining it 
with the second part from the next chromosome, and vice versa.  This is done in two fifths of the 
population.  This method is also known as sexual reproduction.   

• Transposition:  in the last fifth of the population, a portion of the chromosome is transposed.  The 
length is random up to 10 times the mutation percentage of the length of the whole chromosome.  
That makes it an average of about 13 bits, with a range from 2 to 25 bits for our 22 system SoS.  The 
transposed section is cut out, the following part of the chromosome moved left, and the snipped 
section is spliced back in the chromosome its own length from the original starting point.  This is 
similar to crossover (above), but only a short section of the chromosome is transposed, and only one 
parent is used to make the offspring chromosome. 

The mutation operator makes relatively small changes to the chromosome, but the crossover and 
transposition can make very large changes as well as relatively small ones.  This keeps the distribution of 
bits well mixed in the next generation of chromosomes, so that a significant portion of the meta-
architecture is explored. 

4.4.4 Key performance attributes identification and selection  
The key SoS attributes were identified by the panel of subject matter experts and stakeholders in section 
3.2.3.  Trial definitions and algorithms for evaluating each attribute, which depended on the binary 
chromosome representation, were experimented with until we reached a set of algorithms and 
capability estimates for each system with differentiation among a range of trial chromosomes that 
appeared reasonable to stakeholders.   

In the generic sense, the method does not change if there are many performance (or other SoS 
attributes) values to be evaluated.  The functional form of the performance attribute used here was 
primarily a summation of individual system contributions of area searched per hour, with token values 
assigned to non-search systems’ capabilities such as command and control or communications.  The first 
attempt at this had many dependencies and non-linearities (including speed and time on station), but 
explaining the nuances to stakeholders was just too difficult.  The second attempt was much simpler and 
approximate, giving only a rough approximation of one systems’ contribution compared to the other 
systems, but still showed the major effects of different numbers of systems of various types and 
capabilities.   

4.4.5 Data and File Structures Used in Integrating the Models to Generic ABM  
1. Generating Capability, Performance, Cost, Schedule Matrices 

After evolving and selecting a chromosome based on SoS fitness, the information to provide the 
individual systems for the negotiation phase is prepared.  An Excel file with 4 sub matrices equivalent to 
(SOS.M, and SOS.Cg) for capability allocated to systems and interfaces, SOS.P for performance to each 
capability, SOS.f for funding, and SOS.d for deadlines, is prepared in the format of file 
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“domainParameters.xlsx.”  This is created from the domain specific model coded in the Matlab file 
“DomainModel.m” for the GA to process into individual system files for the SoS agent to provide to each 
system agent. 

2. Individual System Data Outputs 

An output file is created for each system 𝑆𝑗 involved in the SoS architecture where 𝑗 = 1, 2, …𝑚.  The file 
is constituted of a table of multiple rows.  Each row depicts one capability 𝐶𝑖 where 𝑖 = 1, 2, …𝑛.  This 
includes whether the system 𝑆𝑗  has been assigned to the capability 𝐶𝑖.  If assigned, 𝑠𝑖𝑗 shows the value 
‘1’ indicating assignment of system 𝑆𝑗 to capability 𝐶𝑖.  Otherwise the value shown is ‘0’.  Similarly, the 
row shows the assignment status of all the system interfaces 𝑟𝑖𝑘.  In addition, it provides the aggregate 
capability performance, deadline and funding for each capability 𝐶𝑖. 

Figure 31 below shows the partial Excel file table for individual systems specifying capability 
participation of the system and interfaces in up to ten various capabilities are used.  The deadline, 
funding and performance for each capability are also provided.  More specifically the figure shows part 
of an output sheet for system 1.  A complete spreadsheet includes all the respective interfaces.  There 
are 22 files that are provided as output. 

n= 5 capabilities 
   m= 22 systems 

    j= 1 
    

 

  

Architecture 
(the portion 
related to 
system j)           

Sj Ij,1 Ij,2 Ij,3 Ij,4 Ij,5 

C1 0 0 0 0 0 0 

C2 0 0 0 0 0 0 

C3 1 0 0 1 1 0 

C4 1 0 0 0 0 0 

C5 0 0 0 0 0 0 

 

Figure 31.  Individual System Capability Participation 

 

3. SoS Data Output 
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An output file of the system of system 𝐴𝑆𝑜𝑆  architecture is created .  Each cell depicts a system 𝑆𝑗  has 
been selected to be part of SoS architecture.  If selected, 𝑆𝑗 shows the value ‘1’.  Otherwise the value 
shown is ‘0’.   

 Figure 32 depicts the output including 22 systems and respective interfaces totaling 253 systems and 
interfaces.  The sheet has been truncated for visibility. 

Systems Contributing to the SoS Architecture 
  1 means system is contributing 

     0 means system is not contributing 
     

       

 

  

Systems             

S1 S2 S3 S4 S5 S6 S7 
Final Architecture 1 0 1 1 1 1 1 

 
Figure 32.  Output chromosome 

 

4. Domain Parameter  Data Inputs 

An Excel file with four tables specifying the domain parameters required for the genetic algorithms 
process is used.   

I. Figure 33 specifies the assignment 𝑠𝑖𝑗 for each system 𝑆𝑗, and the assignment  𝑟𝑖𝑘 for each 
interface 𝐼𝑘.  This is provided for each capability 𝐶𝑖.  The following truncated sheet clarifies. 

II. Figure 34 specifies the performance pij for each system Sj , and the performance pik for each 
interface Ik.  This is provided for each capability Ci.  The following truncated sheet clarifies. 

III. Similarly the third table (not shown) depicts the funding fij and fik for each system and interface 
respectively. 

IV. Finally the last table (not shown) provides the deadline values dij and dik for each system and 
interface respectively. 
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DOMAIN 
PARAMETERS 

          m= 22 systems 
         n= 5 capabilities 

        
Capability Provided by Systems 

1 means capability provided 
by system 

0 means capability not provided by 
system 

  
Systems                     
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

C1 0 0 1 1 0 1 0 0 0 0 0 
C2 0 0 1 1 1 1 1 0 0 0 0 
C3 1 0 1 1 0 1 0 0 0 0 1 
C4 1 0 0 0 0 1 0 0 0 0 0 
C5 0 1 0 1 1 1 0 1 1 1 1 

 

Figure 33.  Capabilities 

 

 

System Performance for Each Capability 
   

 

  

Systems             

S1 S2 S3 S4 S5 S6 S7 

C1 0 0 5 2 0 2 0 

C2 0 0 5 5 1 2 1 

C3 4 0 7 3 0 10 0 

C4 3 0 0 0 0 3 0 

C5 0 5 0 3 3 3 0 

 

Figure 34.  Performance 

4.5 ISR Implementation of System Negotiation Models (Parameter) 
This phase reports the parameter values chosen throughout the ABM model to formulate ISR domain 
problem.   
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Number of systems is =22; Number of capabilities possessed =5; the fuzzy assessor used to assess the 
fitness of architectures has 4 key performance attributes as inputs.  The KPP’S are performance, 
affordability, flexibility and robustness.  The values for the edges of the membership functions are given 
in Table 11. 

 The negative numbers signify that better is smaller, so that all maps go to the right from poorer to 
better values. 

Table 11.  Boundary of the membership mapping from real values to fuzzy membership functions 

 

Attributes mapfuzlow Fuzzy 
Value 1 

Fuzzy 
Value 2 

Fuzzy 
Value 3 

Fuzzy 
Value 4 

Performance – Pk per day for SoS 0 0.4 0.7 1 1.5 
Affordability - $M cost -250 -190 -150 -110 -60 
Flexibility  0 1 2 3 4 
Robustness – Loss of performance -0.75 -0.45 -0.3 -0.15 0 

 

The SoS architecture quality threshold is fixed at 3.1 

4.5.1 Selfish Negotiation Model parameters 
 

Throughput (units of capability produced per time unit per resource unit) is a vector of n elements is 
represented by the symbol y here."𝑦(𝑖) = 0" means the individual system k is not capable of providing 
𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖.  𝑦 is a nonnegative real value vector.  The greater 𝑡ℎ𝑒 𝑦(𝑖), the more efficient the 
𝑠𝑦𝑠𝑡𝑒𝑚 𝑘 𝑖𝑛 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖.  The values for vector y currently used in the model are given 
below. 

 

y 4.5 4.5 4.5 4.5 4.5 

 

Resource per time unit (assuming a symmetric distribution of resource) is given by two variables namely 
Z_avg and Z_range.  The values given to Z_avg =10 and Z_range=1  

 

Costs 

The cost vector is defined as consuming one unit of resource per time unit in producing capabilities.  It is 
a vector with of n elements.  "c_c(i)= 0" if "y(i)=0" . 
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c_c 0.1 0.1 0.1 0.1 0.1 
 

The cost of consuming one unit of resource per time unit in producing interfaces, as a percentage of c_c.  
It is a vector of n elements.  "c_I(i) = 0" if "y(i)=0"  

c_I 5.00% 5.00% 5.00% 5.00% 5.00% 

 

The continuous growth rate per time unit is taken = 0.5% 
The required profit margin of capabilities is denoted by 𝑝𝑚  and it describes the minimum required rate 
of return from providing capabilities.  It is a vector of n elements.  "𝑝𝑚(𝑖) = 0" 𝑖𝑓 "𝑦(𝑖) = 0" 

pm 20% 20% 20% 20% 20% 

 
Negotiation Parameters 

(P1) tells the best performance of the system k at the given deadlines and funding.   

(P2) tells the additional funding needed and additional time needed in order to meet the performance 
requirements (if the system k is capable).   

In (P2) the additional funding needed may be greater than the minimum additional funding needed; 
similarly, the additional time needed may be longer than the minimum additional time needed. 

That is, CriticalPro is the probability of sending the result of (P1) to SoS, and (1-CriticalPro) is the 
probability of sending the result of (P2) to the SoS.  There are two extreme scenarios: 

𝐼𝑓: 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑃𝑟𝑜 =  0, 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 (𝑃2) 𝑖𝑠 𝑠𝑒𝑛𝑡 𝑡𝑜 𝑆𝑜𝑆; 

𝐼𝑓: 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑃𝑟𝑜 =  1, 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 (𝑃1) 𝑖𝑠 𝑠𝑒𝑛𝑡 𝑡𝑜 𝑆𝑜𝑆; 

CriticalPro=0.5 

Funding 

If the system k will use up all funding to be provided by SoS, it requests up to AF1 more than the 
additional funding needed.  AF1= 10% 

If the system k will not use up all funding to be provided by SoS, it requests up to AF2 more than the 
funding provided by the SoS. 

AF2=5% 

Deadline 
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the system k request up to AT units of time more than the minimum additional time needed 

AT=1 

 

4.5.2 Opportunistic Negotiation Model parameters 
Three levels of each factor were created and combination of the values was used as negotiation 
parameters. 

𝑙 =  𝑠𝑦𝑠𝑡𝑒𝑚 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟; 𝑚 =  𝑠𝑦𝑠𝑡𝑒𝑚 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟; 𝑒𝑡𝑎 = 𝑏𝑢𝑑𝑔𝑒𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

Test l m eta 
1 1.1 1.1 0.1 
2 1.5 1.1 0.1 
3 1.9 1.1 0.1 
4 1.1 1.6 0.1 
5 1.5 1.6 0.1 
6 1.9 1.6 0.1 
7 1.1 2 0.1 
8 1.5 2 0.1 
9 1.9 2 0.1 
10 1.1 1.1 0.5 
11 1.5 1.1 0.5 
12 1.9 1.1 0.5 
13 1.1 1.1 0.9 
14 1.5 1.1 0.9 
15 1.9 1.1 0.9 
16 1.1 1.6 0.5 
17 1.5 1.6 0.5 
18 1.9 1.6 0.5 
19 1.1 1.6 0.9 
20 1.5 1.6 0.9 
21 1.9 1.6 0.9 
22 1.1 2 0.5 
23 1.5 2 0.5 
24 1.9 2 0.5 
25 1.1 2 0.9 
26 1.5 2 0.9 
27 1.9 2 0.9 
 

4.5.3 Cooperative Negotiation Model parameters 
N=5 capabilities 

M= 3 issues under negotiation 

S=22 number of systems 
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The minimum and maximum values of the attributes estimated by the individual systems are given 
below: 

� 𝑚𝑖𝑛1 ,    𝑚𝑎𝑥1� = (10, 60)𝑠𝑞.  𝑚𝑖𝑙𝑒𝑠--performance 

� 𝑚𝑖𝑛2 ,    𝑚𝑎𝑥2� = (10, 50)$𝑀--funding 

� 𝑚𝑖𝑛3 ,    𝑚𝑎𝑥3� = (1, 3)𝑤𝑎𝑣𝑒 𝑐𝑦𝑐𝑙𝑒--deadline 

𝑉 = 0.5 ; V varies for each individual system depending on his cooperativeness. 

𝑊2 = 𝑓𝑒𝛼(# 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠−1)    where α =  0.1 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 ( 𝑛𝑒𝑔𝑜𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠) 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜 𝑏𝑒 = 5 

Maximum number of interfaces possible is denoted by 𝐼𝑀𝑎𝑥=21 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑡𝑟𝑎𝑑𝑒 𝑜𝑓𝑓 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑖𝑛𝑛𝑎𝑡𝑒 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠  𝑤1 = 0.7,𝑤2 = 0.3 

5 Results of first wave of ABM Acknowledged SoS for sample ISR 
Problem 

5.1 Results of Fuzzy Genetic Optimization of Sos Meta-Architecture 
The meta-architecture generated by the fuzzy genetic approach is presented below. The architecture 
quality along with the values for the key performance attributes on a scale of 1-4 is given below. 

  
Arch 

Quality 
Architecture  3.7365 

  Performance 2.737108999 
Affordability 3.296602926 

Flexibility 3 
Robustness 3.310474933 

The meta-architecture generated has an overall quality of 3.7365. 
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Systems and interfaces selected in the meta-architecture are represented as binary zeros and ones. 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 
1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 

 

 

 

 

 

 

Interfaces to System 11 Interfaces to System 12 
I11,1

2 
I11,1

3 
I11,1

4 
I11,1

5 
I11,1

6 
I11,1

7 
I11,1

8 
I11,1

9 
I11,2

0 
I11,2

1 
I11,2

2 
I12,1

3 
I12,1

4 
I12,1

5 
I12,1

6 
I12,1

7 
I12,1

8 
I12,1

9 
I12,2

0 
I12,2

1 
I12,2

2 
0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 

 

I1,2 I1,3 I1,4 I1,5 I1,6 I1,7 I1,8 I1,9 I1,10 I1,11 I1,12 I1,13 I1,14 I1,15 I1,16 I1,17 I1,18 I1,19 I1,20 I1,21 I1,22 I2,3 I2,4 I2,5 I2,6 I2,7 I2,8 I2,9 I2,10 I2,11 I2,12 I2,13 I2,14 I2,15 I2,16 I2,17 I2,18 I2,19 I2,20 I2,21 I2,22

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0

Interfaces to System 1 Interfaces to System 2

I3,4 I3,5 I3,6 I3,7 I3,8 I3,9 I3,10 I3,11 I3,12 I3,13 I3,14 I3,15 I3,16 I3,17 I3,18 I3,19 I3,20 I3,21 I3,22 I4,5 I4,6 I4,7 I4,8 I4,9 I4,10 I4,11 I4,12 I4,13 I4,14 I4,15 I4,16 I4,17 I4,18 I4,19 I4,20 I4,21 I4,22

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Interfaces to System 3 Interfaces to System 4

I5,6 I5,7 I5,8 I5,9 I5,10 I5,11 I5,12 I5,13 I5,14 I5,15 I5,16 I5,17 I5,18 I5,19 I5,20 I5,21 I5,22 I6,7 I6,8 I6,9 I6,10 I6,11 I6,12 I6,13 I6,14 I6,15 I6,16 I6,17 I6,18 I6,19 I6,20 I6,21 I6,22

1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

Interfaces to System 5 Interfaces to System 6

I7,8 I7,9 I7,10 I7,11 I7,12 I7,13 I7,14 I7,15 I7,16 I7,17 I7,18 I7,19 I7,20 I7,21 I7,22 I8,9 I8,10 I8,11 I8,12 I8,13 I8,14 I8,15 I8,16 I8,17 I8,18 I8,19 I8,20 I8,21 I8,22

0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

Interfaces to System 7 Interfaces to System 8

I9,10 I9,11 I9,12 I9,13 I9,14 I9,15 I9,16 I9,17 I9,18 I9,19 I9,20 I9,21 I9,22 I10,11 I10,12 I10,13 I10,14 I10,15 I10,16 I10,17 I10,18 I10,19 I10,20 I10,21 I10,22

0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0

Interfaces to System 10Interfaces to System 9
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Interfaces to System 17 Interfaces to System 18 
Interfaces to 
System 19 

Interfaces 
to System 
20 

I to 
S21 

I17,18 I17,19 I17,20 I17,21 I17,22 I18,19 I18,20 I18,21 I18,22 I19,20 I19,21 I19,22 I20,21 I20,22 I21,22 
0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 

 

Three sets of results are obtained by assuming all participating system follow the same negotiation 
model each time. 

 𝑆𝑦𝑠𝑡𝑒𝑚. 𝑆𝑖 = {𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑠𝑡𝑖𝑐, 𝑠𝑒𝑙𝑓𝑖𝑠ℎ} 
𝑆𝑦𝑠𝑡𝑒𝑚. 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖 = 𝑓(∆𝑑,∆𝑓,𝛥𝑝) 

 

Table 12 is a representation of the generic form of outputs or response of the individual system to the 
offer made by SoS. 

 

Table 12 Outputs of the negotiation 

Architecture (the portion related to system j) 
Dead
line 

fundi
ng 

perfo
rman
ce 

S
j 

Ij

,

1 

Ij

,

2 

Ij

,

3 

Ij

,

4 

Ij

,

5 

Ij

,

6 

Ij

,

7 

Ij

,

8 

Ij

,

9 

Ij

,1

0 

Ij

,1

1 

Ij

,1

2 

Ij

,1

3 

Ij

,1

4 

Ij

,1

5 

Ij

,1

6 

Ij

,1

7 

Ij

,1

8 

Ij

,1

9 

Ij

,2

0 

Ij

,2

1 

Ij

,2

2 

Syste
mj.∆
di 

Sust
emj.
∆fi 

Syste
mj.∆p
i 

1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0       

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       

1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1       

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0       

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       
 

5.1.1 Generational Results for the ISR GA with Fuzzy Fitness and Attribute Assessments 
The format for interpreting the GA process eight-chart compilation graphics (Figure 35) is shown in 
Figures 35-42. 

 

I13,14 I13,15 I13,16 I13,17 I13,18 I13,19 I13,20 I13,21 I13,22 I14,15 I14,16 I14,17 I14,18 I14,19 I14,20 I14,21 I14,22 I15,16 I15,17 I15,18 I15,19 I15,20 I15,21 I15,22 I16,17 I16,18 I16,19 I16,20 I16,21 I16,22

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Interfaces to System 13 Interfaces to System 14 Interfaces to System 15 Interfaces to System 16
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Table 13.  Explanation of GA graph pages 

 

1) On the first row of graphs, the number of ones in the whole chromosome (in blue) 
and five times the number of systems in the chromosome (in red) plotted together 
on the same scale.  These are not in generation order, but sorted by the fitness, 
from worst to best, so in early generations this is disorderly.  In later generations it 
shows the result of the mutation operators. 

2) The overall SoS evaluation on the 1 to 4 scale of 1 = unacceptable to 4 = exceeds 
expectations; the small number in the upper left is the generation number 

3) The performance fuzzy variable of each of the chromosomes (in black), and the 
flexibility fuzzy variable (in blue) 

4) A histogram of the crisp value of the SoS evaluation for this generation’s population 

5) On the second row of graphs, the fuzzy value of the robustness attribute 

6) The affordability fuzzy value for each chromosome (scale is 1 to 4) 

7) The total cost for each chromosome, just as a cross check on the fuzzy value, and  

8) The upper triangular display of the generation’s best chromosome ones and zeroes 
with the feasibility color coded:  Black is an unused (zero) and infeasible position; 
Blue is an unused but feasible interface – the performance could be better if it 
were used; Red is a used (has a one in it) interface that is INfeasible (either one 
system not there, or no communication path between systems) – penalized; and 
green is a used and feasible interface or system – rewarded.  The numbers in the 
lower left are the SoS evaluation and the number of each color for feasibility 
penalty/reward.  The system type labels are on the right margin. 

 

The GA output displays are presented from Figure 35 through Figure 38. Figure 35  is a typical initial 
population of the GA.  It shows the widely varying number of ones in the population of chromosomes 
and the generally poor SoS performance as well as attribute values for a series of random selected 
chromosomes.  The next two figures show an intermediate generation, and the Figure 38 shows the final 
solution. Figures 39 shows the improvement in the fitness of the SoS by generation; the top line is the 
best fitness, the second line is fitness of the 20th percentile chromosome.  The top line, showing the SoS 
evaluation, should ratchet toward the final solution, never growing smaller; the fitness value of the 20th 
percentile depends on the genetic operators, so it may dip from one generation to the next. 

This ISR GA model is currently implemented to provide input to the ABM model. 
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Figure 35.  Attribute evaluations for initial population of ISR chromosomes in the GA; the SoS fuzzy values, and 
best chromosome of the generation displayed 
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Figure 36.  Intermediate generation from the GA; all population values sorted by SoS fitness 
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Figure 37.  31st generation; note changes in system participation, interfaces, and best fitness value 
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Figure 38.  The last generation of the GA for this ISR run 
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Figure 39.  Typical, and classic, generational convergence of the GA with the blue line; green line is the 20th 
percentile chromosome 

 

5.1.2 GA Process Results for SAR model 
The next four figures (Figure 40 through Figure 43) show the same style of GA results for the SAR model.  
Note that there are 29 systems instead of 22 from the ISR model, and the names of the types of systems 
along the right side of the chromosome are different.   
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Figure 40.  Initial population data plotted in the GA for SAR 
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Figure 41.  Generation 5 of the SAR GA 
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Figure 42.  Convergence of the SAR GA model 
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Figure 43.  Final chromosome from the SAR GA  model shows the impact of too few communication systems 

 

5.1.3 Performance of the Fuzzy Assessor in the GA 
It is interesting to note that both good and bad architectures appear across a range of number of 
participating systems and interfaces.  This is true both for the overall SoS fitness, and for individual 
attributes scaled-to-fuzzy values.  There is some correlation between performance and number of 
systems up to a point; there is generally no correlation between number of systems and affordability, 
with the other attributes being a bit more random. 

5.1.4 Conclusions about The GA Model Approach 
The implementation of GA in the above optimization is a one pass, non-dynamic approach.  The 
trapezoidal membership functions have a relatively flat fitness output; the simple rule set does not lend 
itself to sharp distinctions from one chromosome to the next.  Therefore, it is observed that the crisp 
fitness reaches a maximum early and does not sharply differentiate “near-by” chromosomes.  There 
seem to be many wasted infeasible interfaces that use up funding without providing any benefit, and in 
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fact, detract from both performance and affordability.  We could remap the membership values to a 
narrower region of the real world attribute values, then run the GA again to sharpen up the output.  We 
could also investigate more intelligent gene specific GA operators.  Nevertheless, we did find that even 
this simple implementation of the GA can relatively quickly find a reasonably good chromosome, that 
meets the intent of the selection process. 

 

5.2 Selfish model results 
The Table 14 illustrates the systems selected in the meta-architecture along with the corresponding 
capability they possess. This table helps the reader to understand the negotiations that proceed after 
the meta-architecture generation process. The Table 15 explains the offer made by the SoS agent based 
on the meta-architecture to the individual systems. The offer consists of three attributes namely 
funding, performance and deadline. These attributes are independent of each other. The funding is 
expressed in million dollars, performance in sq.km of area covered and deadline is measured as waves in 
the overall SoS architecting process. The concept of wave is similar to the concept of era in epoch-era 

analysis.  Epoch-Era Analysis is an approach for describing systems over time as existing in a series of 
static contexts (epochs) that change stochastically. Many epochs constitute an era. The results of the 
first wave are presented in the following tables. Each table belongs to a particular system consisting of 
the values of three attributes that are demanded or provided by SoS. Each system as described above 
can provide only a certain set of capabilities; hence, the rows of capabilities, which cannot be provided 
by the particular system, are empty.  

 

Table 14.  System Selected and their Capabilities in an Meta-Architecture 

Systems Selected for Negotiation (11) Capabilities Possessed  

System 1,2,7 ( 1 and 5) 

System 8 (1) only 

System 11,12, 13 (2 and 5) 

System 14 ( 3 and 5) 

System 18 (4 and 5) 

System 21, 22 ( 5) only 
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Table 15.  Selfish Negotiation Model results for System 1 (Accepted by SoS) 

 

 
 
 
 
The Offer 
by SoS to 
Sys 1 

Capabilities Deadline Funding Performance  
 
 
System 1 
response: 
Accepted by 
SoS to 
provide 
capabilities 
C1 and C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 10.2 13.5 1 
0.488155
14 0 

C2 
0 0 0 0 0 0 

C3 
0 0 0 0 0 0 

C4 
0 0 0 0 0 0 

C5 
1 10.55 16 0 

0.256035
65 0 

 

Table 15 contains information regarding a bilateral negotiation between SoS and System 1. System 1 can 
provide Capability 1 (C1) and/or (C2) but no more. The values in the first row corresponding to C1 
indicate that SoS requires System 1 to join in the first wave of the SoS architecture. SoS is providing a 
funding of 10.2 units to acquire C1 and demands performance level of 13.5 units for the same. The 
response to this offer of SoS can be read in the adjacent columns consisting of delta values of attributes. 

The delta values correspond to (𝑑𝑒𝑙𝑡𝑎 =  𝑆𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 −   𝑆𝑜𝑆 𝑜𝑓𝑓𝑒𝑟). Hence a positive value of 
“1”in deadline means that System is not ready to participate in the first wave but will be ready by the 
second wave. Equivalently the funding delta value is positive 0.488 meaning the System 1 has asked for 
an additional amount from SoS for providing C1. The Performance delta value is zero, which can be 
interpreted as the System 1 prepared to provide the required performance levels.  

Similarly for C5, SoS asks the System 1 to join in the first wave, has provision of 10.55 units of funding to 
extract a performance of 16 units. The response is recorded as delta change in the adjacent columns. 
Based on the delta values of each attributes and the SoS negotiation thresholds, System 1 is accepted to 
be a part of the first wave of the architecting process. Table 16 through Table 25 present the results for 
the rest of the systems. 
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Table 16 Selfish Negotiation Model results for System 2 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
2 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 2 
response: 
Accepted 
by SoS to 
provide 
capabiliti
es C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 10.1 11 0 0 -2.13163E-14 
C2 

1 0 0 0 0 0 
C3 

0 0 0 0 0 0 
C4 

1 0 0 0 0 0 
C5 

1 10.2 12 0 0 -7.10543E-15 
 

Table 17 Selfish Negotiation Model results for System 7 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
7 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 7 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 2.2 13.5 1 0.08714281 0 
C2 

1 0 1 0 0 0 
C3 

1 0 0 0 0 0 
C4 

1 0 0.5 0 0 0 
C5 

1 2.45 16 0 0.11753782 0 
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Table 18 Selfish Negotiation Model results for System 8 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
8 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 8 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 15 5 1 0.70049494 0 
C2 

1 0 0.5 0 0 0 
C3 

0 0 0.5 0 0 0 
C4 

1 0 0 0 0 0 
C5 

1 0.25 2 0 0 0 
 

Table 19 Selfish Negotiation Model results for System 11 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
11 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 11 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1.5 0 0 0 
C2 

1 10.7 19.5 1 
0.3975758
7 0 

C3 
1 0 0.5 0 0 0 

C4 
1 0 0.5 0 0 0 

C5 
1 11.2 22.5 0 

0.2196471
3 0 
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Table 20.    Selfish Negotiation Model results for System 12 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
12 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 12 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1 0 0 0 
C2 

1 10.35 18.5 0 0.0164735 0 
C3 

0 0 0 0 0 0 
C4 

0 0 0.5 0 0 0 
C5 

1 10.6 21 0 
0.1467691
8 0 

 

Table 21.   Selfish Negotiation Model results for System 13 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
13 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 13 
response: 
Rejected 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

0 0 0 0 0 0 
C2 

1 18 41 2 
0.6253457
6 0 

C3 
0 0 0 0 0 0 

C4 
0 0 0 0 0 0 

C5 
1 18 42 1 

0.2853895
3 0 

 

The system13 can meet the performance requirement on the capability C2 and C5 but requests an 
extension of deadline for 2nd wave on C2 and an additional funding of 0.6235 units.  Since the System is 
not ready to participate in in the current wave and needs more time (upto the 3rd wave of SoS ) the SoS 
agent rejects the offer of negotiation. 
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Table 22.    Selfish Negotiation Model results for System 14 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
14 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 14 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 0.5 0 0 -0.5 
C2 

1 0 0.5 0 0 -0.5 
C3 

1 13 12 0 0 0 
C4 

1 0 0 0 0 0 
C5 

1 13.45 13.5 0 0 0 
 

Table 23.   Selfish Negotiation Model results for System 18 (Accepted by SoS) 

 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
18 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 18 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1 0 0 -1 
C2 

1 0 1 0 0 -1 
C3 

1 0 0 0 0 0 
C4 

1 2.5 15 0 0 -1.95399E-14 
C5 

1 2.75 18 0 0 3.55271E-15 
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Table 24 Selfish Negotiation Model results for System 21 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
21 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 21 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 1 2 0 0 0 
C2 

1 0.7 1.5 0 0 0 
C3 

0 0 0.5 0 0 0 
C4 

1 1 0.5 0 0 0 
C5 

1 7.2 19.5 0 0.28627196 0 
 

Table 17 above implies that no changes are required for the deadlines and performance for capability 5.  
Overall, we also see reduced needs for funding. 

Table 25 Selfish Negotiation Model results for System 22 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
22 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 21 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

0 0 2 0 0 -2 
C2 

1 0.35 1.5 0 0 -1.5 
C3 

1 1 0.5 0 0 -0.5 
C4 

0 0 0.5 0 0 -0.5 
C5 

1 5.45 19.5 0 0 -1.29958E-11 
 

After the end of the first wave only System 13 is rejected due to the reasons give above. All other 
systems are selected and Since System 13 did not have any interface with the other participating 
systems, the interface matrix does not get affected as well. 

Final Architecture is shown in Figure 44 below: 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S14 S15 S16 S17 S18 S19 S20 S21 S22 
1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 

Figure 44.   Final Architecture 

The interface architecture remains the same as before. 
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5.3 Opportunistic Model Results 
In the results below η is set to 0.2, and both l =1.9 and m =1.1.   This implies that the system assumes a 
high risk and estimating more money needed to provide the capabilities. One of the behavior factors “l” 
is kept high to make system very slow in operation while the other “m” is kept low for faster output. 
Although  , in the negotiation process, the values of η, l and m can be changed at will to obtain a large 
number of systems, and thereby the SoS has the ability to select a suitable system that is sufficiently 
selfless and fast in its actions.  This selection of values for the parameters is chosen to have a tradeoff 
between all three. The results could be interpreted as follows: 

Table 26 contains information regarding a bilateral negotiation between SoS and System 1 through an 
opportunistic negotiation model. System 1 can provide Capability 1 (C1) and/or (C2) but no more. The 
values in the first row corresponding to C1 indicate that SoS requires System 1 to join in the first wave of 
the SoS architecture. SoS is providing a funding of 10.2 units to acquire C1 and demands performance 
level of 13.5 units for the same. The response to this offer of SoS can be read in the adjacent columns 
consisting of delta values of attributes. The response is formulated in terms of delta change. 

 

Table 26 Opportunistic Negotiation Model results for System 1 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 1 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 1 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 10.2 13.5 

0 -
1.2384532
4 

-
2.372174142 

C2 
0 0 0 

0 0 0 

C3 
0 0 0 

0 0 0 

C4 
0 0 0 

0 0 0 

C5 
1 10.55 16 

0 1.2809491
85 

-2.81146565 

 

 

The delta values correspond to (𝑑𝑒𝑙𝑡𝑎 =  𝑆𝑦𝑠𝑡𝑒𝑚′𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 −   𝑆𝑜𝑆 𝑜𝑓𝑓𝑒𝑟). Hence a positive value 
of “1”in deadline means that System is not ready to participate in the first wave but will be ready by the 
second wave. Equivalently the funding delta value is negative 1.238 meaning the System 1 has offered 
to work for a lesser amount from SoS for providing C1. The Performance delta value is -2.37 which can 
be interpreted as the System 1 offers lesser performance than required but at a lower cost.  
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Similarly for C5, SoS asks the System 1 to join in the first wave, has provision of 10.55 units of funding to 
extract a performance of 16 units.  Based on the delta values of each attributes and the SoS negotiation 
thresholds, System 1 is accepted to be a part of the first wave of the architecting process. Table 27 
through Table 36 present the results for the rest of the systems. 

Table 27 Opportunistic Negotiation Model results for System 2 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 2 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 2 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 10.1 11 0 -0.8702365 
-
2.010443534 

C2 
1 0 0 0 0 0 

C3 
0 0 0 0 0 0 

C4 
1 0 0 0 0 0 

C5 
1 10.2 12 0 -0.8788527 

-
2.193211127 

 

Table 28 Opportunistic Negotiation Model results for System 7 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 7 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 7 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 2.2 13.5 0 -0.1895565 -2.467362518 
C2 

1 0 1 0 0 0 
C3 

1 0 0 0 0 0 
C4 

1 0 0.5 0 0 0 
C5 

1 2.45 16 0 -0.211097 -2.924281503 
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Table 29 Opportunistic Negotiation Model results for System 8 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 8 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 8 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 15 5 0 -1.8212548 -0.878583016 
C2 

1 0 0.5 0 0 0 
C3 

0 0 0.5 0 0 0 
C4 

1 0 0 0 0 0 
C5 

1 0.25 2 0 0 0 
 

Table 30.   Opportunistic Negotiation Model results for System 11 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
11 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 11 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1.5 0 0 0 
C2 

1 10.7 19.5 0 
0.4418836
8 

-
4.061060409 

C3 
1 0 0.5 0 0 0 

C4 
1 0 0.5 0 0 0 

C5 
1 11.2 22.5 0 

0.4625324
6 

-
4.685838933 
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Table 31.   Opportunistic Negotiation Model results for System 12 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
12 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 12 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1 
0 0 0 

C2 
1 10.35 18.5 

0 -1.9020002 -
3.020057917 

C3 
0 0 0 

0 0 0 

C4 
0 0 0.5 

0 0 0 

C5 
1 10.6 21 

0 -1.9479422 -
3.428173851 

 

Table 32.   Opportunistic Negotiation Model results for System 13 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
13 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 13 
response: 
Rejected 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

0 0 0 0 0 0 
C2 

1 18 41 0 -4.2711864 
-
6.254237288 

C3 
0 0 0 0 0 0 

C4 
0 0 0 0 0 0 

C5 
1 18 42 0 -4.2711864 

-
6.406779661 
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Table 33 Opportunistic Negotiation Model results for System 14 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
14 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 14 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 0.5 
0 0 0 

C2 
1 0 0.5 

0 0 0 

C3 
1 13 12 

0 2.8171912
8 

-
2.920096852 

C4 
1 0 0 

0 0 0 

C5 
1 13.45 13.5 

0 2.9147094
4 

-
3.285108959 

 

Table 34 Opportunistic Negotiation Model results for System 18 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
18 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 18 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1 
0 0 0 

C2 
1 0 1 

0 0 0 

C3 
1 0 0 

0 0 0 

C4 
1 2.5 15 

0 -0.11913 -2.857044007 

C5 
1 2.75 18 

0 -0.131043 -3.428452808 

 

Table 35 Opportunistic Negotiation Model results for System 21 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
21 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 21 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 1 2 0 0 0 
C2 

1 0.7 1.5 0 0 0 
C3 

0 0 0.5 0 0 0 
C4 

1 1 0.5 0 0 0 
C5 

1 7.2 19.5 0 0.29734229 -4.061060409 
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Table 36 Opportunistic Negotiation Model results for System 22 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
22 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 21 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

0 0 2 
0 0 0 

C2 
1 0.35 1.5 

0 0 0 

C3 
1 1 0.5 

0 0 0 

C4 
0 0 0.5 

0 0 0 

C5 
1 5.45 19.5 

0 -0.6617226 -3.426473761 

 

After the end of the first wave all systems are selected and all interfaces are retained as well.  So the 
interface matrix does not get affected as well. 

Final Architecture is shown in Figure 45 below: 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 
1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 

 

Figure 45.  Final Architecture 

The interface architecture remains the same as before.  

 

5.4 Cooperative Model Results 
In the results below, cooperativeness of the system denoted in the model by “V” is set equal to 0.8.   
This implies that the system assumes a high cooperativeness. The innate cooperative behavior is 
assumed to be 3 times higher or more than the constrained behavior. Hence, the weight for innate 
cooperative behavior is 0.7 and 03 for constrained behavior of the individual systems. Both the 
cooperativeness “V” and the weightage can have different values for each individual system.  Although 
to present results in a simple fashion, they are kept the same throughout the calculations. The results 
are shown in Table 37 thought Table 47: 
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Table 37 Cooperative Negotiation Model results for System 1 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 1 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 1 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 10.2 13.5 0 -1.428 
-
0.937058824 

C2 
0 0 0 0 0 0 

C3 
0 0 0 0 0 0 

C4 
0 0 0 0 0 0 

C5 
1 10.55 16 1 

3.6789246
3 6.708823529 

 

Table 38 Cooperative Negotiation Model results for System 2 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 2 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 2 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 10.1 11 0 -1.414 -0.50875 
C2 

1 0 0 0 0 0 
C3 

0 0 0 0 0 0 
C4 

1 0 0 0 0 0 
C5 

1 10.2 12 1 
3.8598415
8 5.665990099 
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Table 39 Cooperative Negotiation Model results for System 7 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 7 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 7 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 2.2 13.5 0 -0.308 -0.624375 
C2 

1 0 1 0 0 0 
C3 

1 0 0 0 0 0 
C4 

1 0 0.5 0 0 0 
C5 

1 2.45 16 1 0.9461733 7.679090909 
 

Table 40.   Cooperative Negotiation Model results for System 8 (Accepted by SoS) 

 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 8 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 8 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 15 5 
0 -2.1 -0.347058824 

C2 
1 0 0.5 

0 0 0 

C3 
0 0 0.5 

0 0 0 

C4 
1 0 0 

0 0 0 

C5 
1 0.25 2 

0 0 0 
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Table 41.  Cooperative Negotiation Model results for System 11 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
11 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 11 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1.5 0 0 0 
C2 

1 10.7 19.5 0 -1.498 0.195 
C3 

1 0 0.5 0 0 0 
C4 

1 0 0.5 0 0 0 
C5 

1 11.2 22.5 1 
4.1217395
6 11.65528037 

 

Table 42 .  Cooperative Negotiation Model results for System 12 (Accepted by SoS) 

 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
12 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 12 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1 
0 0 0 

C2 
1 10.35 18.5 

0 -1.449 -
2.005789474 

C3 
0 0 0 

0 0 0 

C4 
0 0 0.5 

0 0 0 

C5 
1 10.6 21 

1 3.8716457
3 

8.333399441 
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Table 43 Cooperative Negotiation Model results for System 13 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
13 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 13 
response: 
Rejected 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

0 0 0 
0 0 0 

C2 
1 18 41 

0 0 0 

C3 
0 0 0 

0 0 0 

C4 
0 0 0 

0 0 0 

C5 
1 18 42 

0 0 0 

 

Table 44 Cooperative Negotiation Model results for System 14 (Accepted by SoS) 

 
 
 
 
The 
Offer 
by SoS 
to Sys 
14 

Capabiliti
es 

Deadlin
e 

Fundin
g 

Performan
ce 

 
 
 
System 14 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi 
0 0 0 

C1 
1 0 0.5 

0 0 0 

C2 
1 0 0.5 

0 -1.82 2.28 

C3 
1 13 12 

0 0 0 

C4 
1 0 0 

1 5.0438649
6 

9.517615385 

C5 
1 13.45 13.5 

0 0 0 

 

Table 45 Cooperative Negotiation Model results for System 18 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
18 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 18 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 0 1 0 0 0 
C2 

1 0 1 0 0 0 
C3 

1 0 0 0 0 0 
C4 

1 2.5 15 0 -0.35 -0.3 
C5 

1 2.75 18 1 1.02666667 8.88 
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Table 46 Cooperative Negotiation Model results for System 21 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
21 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 21 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

1 1 2 
0 0 0 

C2 
1 0.7 1.5 

0 0 0 

C3 
0 0 0.5 

0 0 0 

C4 
1 1 0.5 

0 0 0 

C5 
1 7.2 19.5 

0 -1.008 0.195 

 

Table 47 Cooperative Negotiation Model results for System 22 (Accepted by SoS) 

 
 
 
 
The 
Offe
r by 
SoS 
to 
Sys 
22 

Capabilitie
s 

Deadlin
e 

Fundin
g 

Performanc
e 

 
 
 
System 21 
response: 
Accepted 
by SoS to 
provide 
capabilitie
s C1 and 
C5 

Deadline Funding Performance 
 

SoS.di SoS.fi SoS.pi Systemj.∆di Sustemj.∆fi Systemj.∆pi 
C1 

0 0 2 
0 0 0 

C2 
1 0.35 1.5 

0 0 0 

C3 
1 1 0.5 

0 0 0 

C4 
0 0 0.5 

0 0 0 

C5 
1 5.45 19.5 

0 -0.763 -1.353529412 

 

After the end of the first wave all systems are selected and all interfaces are retained such that the 
interface matrix does not get affected. 

The final architecture is shown in Figure 46 below: 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 
1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 

 

Figure 46.   Final Architecture 

The interface architecture remains the same as before. 

These results drive the conclusion that all system via a cooperative negotiation model are selected to 
participate in the SoS. This concludes the first wave as well. 
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Arch 

Quality 
Architecture  3.6419 

  
Performance 

2.592249914 

Affordability 
3.577980575 

Flexibility 
3 

Robustness 
3.757302522 

 

 

6 Concluding Remarks and Future Work 
The current analysis environment has matured to the point where it could support SoS analysis and 
decision-making, which would identify new opportunities to improve the SoS analysis tools.  The next 
step is to create the demonstration and presentation materials necessary to describe the capabilities of 
the ABM, and provide an overview of analysis tools to potential users identified by the sponsor.  In the 
next phase of the project as a new research task, team shall create   the demonstration and 
presentation materials necessary to describe the capabilities of the toolset, and provide an overview of 
analysis tools to potential users to be identified by the sponsor.   

In addition, there are several areas of analysis, which we would like to continue our previous 
investigations, as well as explore new areas such as: 

- What is the impact of different constituent system perspectives regarding participating in the 
SoS on the overall mission effectiveness of the SoS? 

- How do differing levels of cooperativeness in participating in the SoS impact the ability and 
timeliness of a group to agree on a SoS or system architecture?  Or impact the ability to effectively use 
the architecture already in place? 

- How should decision-makers incentivize systems to participate in SoS, and better understand 
the impact of these incentives during SoS development and effectiveness?   

Missouri S&T team is planning to make any necessary changes to apply and validate the utility of the 
tools to address these analysis requirements. In addition to providing transition support for customer 
organizations, Missouri S&T team like to plan on investigating the potential to incorporate the Missouri 
S&T SoS analysis tools in the analytic workbench being developed by Purdue University.  Although the 
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Purdue and Missouri S&T tools may end up serving different analysis communities, we believe there 
could be significant benefits for managing the support of the tools in similar ways. 
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